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Figure 1: Our novel method allows for deformation, diffusion, and crack formation in thin membranes composed of different materials, such
as foil (column 1), rubbery films (column 2), and seaweed flakes (column 3). (Top) Symmetric crack patterns without diffusion effects, and
(bottom) asymmetric crack patterns due to diffusion of various quantities, such as temperature (in foil), acid solvent (in rubbery film), and
moisture (in seaweed flakes). (Column 4) Our simulations of wet paper towel (bottom) qualitatively match real-world observations (top).

Abstract

We propose a Lagrangian particle-based formulation for simulating deformation, fracture, and diffusion in thin membrane-
like structures, such as aluminium foil, rubbery films, and seaweed flakes. We integrate our model with diffusion processes
and derive a unified framework for simulating deformation-diffusion coupled phenomena, which is applied to provide realistic
heterogeneity induced by the diffusion process to fracture patterns. To the best of our knowledge, our work is the first to simulate
the complex fracture patterns of single-layered membranes in computer graphics and introduce heterogeneity induced by the
diffusion process, which generates more geometrically rich fracture patterns. Our end-to-end 3D simulations show that our
deformation-diffusion coupling framework captures detailed fracture growth patterns in thin membranes due to both in-plane
and out-of-plane motions, producing realistically wrinkled slit edges, and heterogeneity introduced due to diffusion.

CCS Concepts
• Computing methodologies → Computer graphics; Physical simulation;

† Joint first authors

1. Introduction

Membrane-like deformable objects play an important role in com-
puter graphics for representing clothes [LYO∗10], paper [SRH17,
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Figure 2: Crack Path. We put two sources that emits diffusive matter in a pre-notched membrane. Our method captures symmetric cracks in
the membrane without diffusion (top) and asymmetric crack propagation in the membrane with diffusion (bottom). The crack tip changes its
path when it reaches close to the source spots. Diffusive quantities are visualized with colors from light red to dark red for increasing values.

BDW13], biological tissues [DCL00], and shells [KMB∗09]. De-
spite continuous deformations, such as stretching and bending,
fracture is a complex material response for realistic animations and
has drawn attention from numerous groups. Since a membrane-like
object exhibits little deformation in the direction of its thickness,
complaint thin membranes in the real world often have more com-
plex fracture behavior, particularly when non-homogeneous mate-
rial properties are considered. Examples of such materials include
leather, skin, wet paper, plywood, and composite cloth.

The conventional approach for simulating general deformable
objects, not only in computer graphics but also in engineering,
relies heavily upon classical solid mechanics where the govern-
ing equations of motion are described by partial differential equa-
tions (PDEs). Such formulations suffer from inherent limitations
when applied to problems involving material failure since the spa-
tial derivatives do not exist on crack tips or crack surfaces, mak-
ing the differential equations invalid on these singularities. Con-
sequently, numerical discretization techniques such as the Finite
Element Method (FEM) [ZTNZ77, GSH∗04, LYO∗10, SB12] and
Material Point Method (MPM) [WFL∗19, WCL∗20], are not al-
ways satisfactory, either physically or mathematically, in part be-
cause of the need for supplemental relations that control the growth
of cracks. Similar issues also arise in simulations of other PDEs
that describe the evolution of physical fields, such as diffusion pro-
cesses, in materials with discontinuities.

In contrast to PDE-based descriptions of the governing equations
of motion, integral formulations [Cru77,Lad00] for deformable ob-
jects offer an attractive alternative that avoids the spatial singulari-
ties that arise due to the presence of discontinuities. Among them,
peridynamics [Sil00, SL10] has been widely adopted in engineer-
ing, which is a non-local reformulation of PDE-based continuum
mechanics. Unlike the classical theory, the state of a material point
is influenced not only by material points located in its immediate
vicinity, but also by those from over long distances. The govern-
ing equations of motion in peridynamics are spatial integral equa-
tions instead of PDEs. The peridynamics model has been recently

investigated in computer graphics [LBC∗14, CZZ∗18, LZC∗19,
HWW17] for simulating fracture in volumetric deformable objects.

The crack path in thin membranes is extremely sensitive in real-
world materials. Previous studies [PNDJO14, BDW13] have simu-
lated crack propagation in membrane-like materials via FEM and
the crack paths were purely decided by the deformation field of the
material, while the influence of multi-physics on crack paths has
not been investigated in graphics. Diffusion, such as temperature
change in foils, is one of the common causes that affects the crack
paths in nature as it introduces extra diffusion-driven stress into
material constitutive laws (see equations (18), (19), and (20)). Such
diffusion-driven stress appears to be significant in thin membranes
and triggers heterogeneity of dynamic responses exhibiting arbi-
trary fracture patterns in membranes (see Figure 2). In the present
work, we propose a Lagrangian particle-based model to simulate
fracture and diffusion processes in thin membranes. Instead of de-
scribing the governing equations of motion with PDEs [Gur82] and
discretizing these PDEs, our formulation is an integral expression
similar to peridynamics [HWW17, CZZ∗18, LBC∗14], such that it
can readily handle simulations involving fractures without suffer-
ing from the issue of spatial singularities on crack tips. Our main
contributions are as follows:

1. A Lagrangian particle-based model that directly provides in-
tegral formulations for coupled simulation of deformation-
diffusion phenomena with fracture in membrane-like objects.

2. A novel criterion for automatically updating fracture growth.
3. End-to-end simulations of stretching, tearing, and heterogeneity

induced by diffusion to highlight the versatility of our method.

2. Related Work

In this work, we only review prior work related to simulations
for membrane-like structures since our focus is on thin struc-
tures. However, we note that there are numerous established mod-
els to simulate volumetric deformable objects with fracture, since
it is a well-studied problem in both engineering and computer
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Figure 3: Large deformation. Our model captures the large shearing (top) and stretching (bottom) deformation.

graphics [MBF04, SDF07, HJST13, KBT17, WDG∗19, WFL∗19,
WCL∗20]. An early survey regarding deformable models in com-
puter graphics was given in [NMK∗06] which provides an easy en-
try point for researchers and developers who are new to this field.

2.1. Deformation of membrane structures

Physics-based simulations for membrane structures, such as paper,
cloth, and foil, have a long history in computer graphics. The sim-
ple mass-spring system was largely used in early work [CK05,
P∗95, BFA02], where the governing equations were a nodal-
discretized Newton’s second law. Later, unlike mass-spring models,
finite-strain theory from classical continuum mechanics [ZTTT00]
was utilized to describe deformable bodies, in which the intu-
itive governing equations are a set of partial differential equations
(PDEs). To discretize those PDEs, mesh-based discretization tech-
niques, such as the Finite Element Method (FEM) [ZTNZ77,SB12]
were used. Later, FEM simulations for thin shells [KMB∗09] be-
came a popular research topic in computer graphics. On the other
hand, mesh-free methods, such as SPH [PGBT18] and position-
based dynamics [MHHR07,MMC16] are also proposed to simulate
systems with small thickness. Besides, the Material Point Method
(MPM) [JGT17] was recently adopted to simulate cloth due to its
convenience of merging the advantages of both particles and grids
in the discretization.

In contrast to PDE-based simulations, a spatial integral formula-
tion for continuum mechanics, named Peridynamics, was recently
proposed in engineering [Sil00, SL10]. Since its essence is to use
integration to compute the forces on a material particle, it can eas-
ily handle systems with fracture. This integral formulation for con-
tinuum mechanics has also been introduced in computer graphics
for simulations of deformable objects with fracture. Current re-
search [CZZ∗18, LZC∗19, HWW17] has so far focused on peridy-
namics formulations for volumetirc objects and produced persua-
sive effects. However, a peridynamics formulation for membrane
structures, which is surface-based, as well as its coupling with dif-
fusion, remains unclear in graphics.

2.2. Fracture animation

Early work on fracture simulations in computer graphics dates back
to [TF88, NTB∗91], which formulates a simple stretching limit as
the criterion for fracture initiation and growth. FEM-based frac-
ture simulations of both brittle objects [OH99] and ductile ob-
jects [OBH02] were developed by O’Brien and his collaborators.
Later, a virtual node method [SDF07, MBF04] in the FEM frame-
work was proposed to embed cracks in virtual elements to prevent
stability issues. XFEM embedding [KMB∗09, KBT17] can accu-
rately resolve dynamics along the crack path, but imposes lim-
its on the fracture geometry and can be costly for complicated
fracture patterns. Instead of simulating fractures using meshes, re-
searchers have also studied other representations, including particle
systems [DCL00, Mül08, WDG∗19], arbitrary polyhedra [WSG05,
MKB∗08, HJST13], and point clouds [PKA∗05, SOG06]. More-
over, MPM-based fracture, such as CRAMP [Nai03, GN06], pro-
vides an additional approach to fracture simulations. Recently, a
variational phase-field approach was integrated with MPM to ani-
mate isotropic [WFL∗19] and heterogeneous fractures [WCL∗20].

3. Overview of Lagrangian Formulation for PDE-based
Coupling of Deformation and Diffusion

In this section, we provide an overview of the Lagrangian method-
ology and demonstrate how it can be used to derive the traditional
PDE-based governing equations for coupling deformation and dif-
fusion, such as those that arise in thermoelasticity [AD12, XZT19,
XSH∗20]. The resulting equations are formulated as differential
equations, which assume sufficient smoothness conditions. In other
words, any spatial discontinuity, such as fracture, violates the con-
tinuity condition and causes differential terms in space to become
non-differentiable. This assumption also makes sense in either the
weak-form discretization, such as FEM [ZTNZ77], or strong-form
discretization, such as SPH [MST04], of the governing equations.
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Figure 4: Tearing foil. We tear an aluminum foil demonstrating that our method can simulate fractures by out-of-plane motions. We heat the
sheet up by 100 heat spots randomly located on the sheet and observe the crack propagation under thermal stress. Our method captures a
“clean” fracture pattern in the foil without any thermal stress (top), and heterogeneous fracture patterns with thermal stress (bottom).

3.1. Deformation

The Lagrangian L for a deformable object is defined as:

L(q, q̇) =K(q̇)−U(q), (1)

where q is the generalized displacement, q̇ is the generalized ve-
locity, K(q̇) is the kinetic energy, and U(q) is the potential en-
ergy. Since we also consider the potential energy introduced due
to diffusion processes, such as heat transfer [XZT19] or moisture
change [XSH∗20], a diffusive quantity θ is introduced to the poten-
tial energy U . By omitting the energy due to external body forces
and traction for the sake of simplicity, the kinetic and potential en-
ergies can be defined as:

K(q̇) = 1
2

∫
B

ρ
0q̇T q̇dV, U(q,θ) =

∫
B

Ψ(F,θ)dV, (2)

where ρ
0 is the material density, Ψ(F) is the Helmholtz free energy

per unit mass in homogeneous materials, and F is the deformation
gradient tensor. θ is the quantity being diffused, such as the temper-
ature or moisture. Under the assumption that all the physical vari-
ables are sufficiently smooth, we can define a Lagrangian density
function as follows:

L̄(q, q̇,F) = 1
2

ρq̇T q̇−Ψ(F,θ). (3)

Based on the Lagrangian framework [ZTNZ77] and the condition
of continuity, the governing equations of motion are as follows:

d
dt

(
∂L̄
∂q̇

)
− ∂L̄

∂q
= 0, (4)

where

d
dt

(
∂L̄
∂q̇

)
= ρq̈, ∂L̄

∂q
=

∂Ψ(F,θ)
∂F

∂F
∂q

. (5)

Note that the term ∂Ψ(F)/∂F represents a stress tensor that is de-
termined by the material constitutive model, and the term ∂F/∂q
can be further expressed in terms of a divergence operator. These

two terms together define the internal force as the material deforms.
In the present work, we utilize the total Lagrangian formulation, in
which all the derivatives are evaluated with respect to the initial
configuration at time t0. By doing this, the PDE-based governing
equations can be written as:

ρ
0q̈+∇0 ·P = b, (6)

where P and b represent the first Piola–Kirchhoff stress tensor and
external body force density, respectively, and the differential opera-
tor∇0�= ∂�/∂q0. The Piola–Kirchhoff stress includes stress due
to deformation and diffusion, and is defined as follows:

P = PD− (3λ+2µ)αIθ, (7)

where PD represents the stress due to deformation. Depending on
different constitutive models, one can get different concrete expres-
sions for PD, λ and µ are Lamé parameters, and α is the coefficient
of linear diffusion expansion in the material.

3.2. Diffusion

We consider the Fourier model for diffusion [BILD11]. Thus, the
governing equations are described as:

ρC
∂θ

∂t
=∇· (k∇θ)+S, (8)

where θ is the quantity being diffused, S is the diffusive source/sink,
ρ is the material density, C is the diffusive capacity, and k is the
coefficient of diffusion. Our method can also be integrated with
non-Fourier diffusion, such as the C-F diffusion model [XSH∗20].
However, we do not pursue this direction in our present work.

4. Lagrangian Particle-based Framework for Thin Structures

Inspired by [SB05, HHB11], we now derive a Lagrangian particle-
based framework for single-layered membrane-like structures. In
our formulation, physical quantities are defined on particles rather
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Figure 5: Stretching rubbery film. We stretch a thin rubbery film with a small slit on the top edge (top). We randomly spray acid solvent on
the film that diffuses and causes biodegradability, subsequently leading to arbitrary fracture patterns (bottom). Our method captures vivid
wrinkles along the edges and produces rich dynamic response of the film rebounding after it has been completely damaged.

than grids and the damage is handled by blocking the influence
from neighboring particles instead of eliminating material particles.
Different material models, such as linear and non-linear elasticity,
or elastoplasticity, are supported in our framework. The resulting
formulation is integral-based in space and does not require the con-
dition of continuity, in contrast to alternative formulations that are
PDE-based. Figure 6 gives a data flow of our Lagrangian Particle-
based framework for thin structures.

4.1. Membrane Lagrangian

Since a membrane-like structure is very thin and offers little re-
sistance to bending, we consider the Lagrangian in equation (4) to
be defined on an area, unlike its volumetric counterpart. We de-
fine a position vector as qi and diffusive quantity at qi as θi. The
Lagrangian at qi in a neighborhood Ωi is formulated as follows:

Li =
∫

j∈Ωi

[
1
2

ρ
0
j(q̇ j)

T q̇ j−Ψ(F j,θ j)

]
dA, (9)

where q j represents any arbitrary position located in Ωi. When
Ωi → 0, under the condition of continuity, a Lagrangian density
function such as equation (3), can be defined to replace equation (9)
for further derivations, and leads to a PDE-based governing equa-
tion (see equation (6)). However, since our goal is to simulate a
fracturing body, we use equation (9) to derive our formulation. We
assume that there is a micro-spring between any two neighboring
points that accounts for both deformation and diffusion. The stretch
in this micro-spring can be defined as:

si j =
‖ri j‖
‖r0

i j‖
, (10)

where ri j = q j − qi in the current configuration, and r0
i j = q0

j −
q0

i in the initial (i.e., resting) configuration at time t0. These two
distance vectors satisfy the relation:

ri j = Fir0
i j, (11)

where Fi denotes the deformation gradient at qi. In this way, this
stretch value si j can be treated as the deformation ratio, and as-
sumed to play the same role as the deformation gradient tensor in a
volumetric system. As a natural extension, a scalar strain can also
be defined as ηi j = si j−1. Based on equation (4), ηi j is produced
by a competition between the deformation and diffusion energies,
and the free energy Ψi j for different materials [XZT19, LS67] can
be defined as:

1. Linear elasticity

Ψi j =
1
2

cη
2
i j− (3λ+2µ)αθ jηi j, (12)

where c is a positive constant describing the stiffness of the
spring (see equation (24) for the specific expression for c).

2. Non-linear elasticity
We use the following non-linear elasticity (power law)
model [Tre44] to describe rubbery membranes:

Ψi j = c

(
s2

i j +
1

s2
i j

)
+ c?sn

i j− (3λ+2µ)αθ jηi j, (13)

where c? ≤ 0 and n > 1 are user-defined constants.
3. Elastoplasticity

To describe elastoplasticity, we assume that the deformation is
elastic and reversible if η < η0. However, when η ≥ η0, the
deformation becomes irreversible and plastic. In this case, the
Lagrangian is given as follows:

Ψi j =


1
2

cη
2
i j− (3λ+2µ)αθ jηi j, ηi j < η0

− c
β
(η0

i j)
2e
(
−β

ηi j−η0
η0

)
− (3λ+2µ)αθ jηi j, ηi j ≥ η0

(14)

where β is a user-defined parameter.

To validate the above derivation, we briefly demonstrate that our 2D
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Figure 6: Overview of our proposed method. For simplicity, the orange circle is the influence range of its centered particle (also colored in
orange), the grey lines are the virtual micro-bonds linking the centered particle and its neighboring particles, the green solid line is the crack
path across the material, and the red dotted lines are the connected bonds that are cut by the crack surface. We remove these broken bonds
when evaluating the dynamic and diffusion responses of all particles in our integral formulation, and update the particle states for time tn+1.

‘micro-edge’ free energy model given in equations (12)–(14) coin-
cides with a reasonable classical elastic material in Appendix A.
More detailed information can be found in [Sil00, HHB11].

4.2. Integral-based Equation of Motion

Next, we derive the integral-based equation of motion at position i
via the Lagrangian in equation (9). Substituting the expression for
Li in equation (9) into equations (4) and (5) gives:

1. Kinetic term:

d
dt

(
∂Li

∂q̇i

)
=

∫
j∈Ωi

ρ
0
j q̈ jdA =

∫
j∈Ωi

ρ
0
j dAq̈i = m0

i q̈i, (15)

where m0
i is the mass at position i.

2. Deformation term:

∂Li

∂qi
=

∫
j∈Ωi

∂Ψ(F j ,θ j)
∂qi

dA =
∫

j∈Ωi

∂Ψ(F j ,θ j)
∂ηi j

∂ηi j
∂qi

dA, (16)

where ∂Ψ(F j,θ j)/∂ηi j is a scalar value representing the magni-
tude of the force between neighboring points i and j. We define
fi j as ∂Ψ(F j,θ j)/∂ηi j, and equation (16) is rewritten as follows:

∂Li

∂qi
=

∫
j∈Ωi

fi j
∂ηi j

∂qi
dA =

∫
j∈Ωi

fi j
n0

i j

‖r0
i j‖

dA, (17)

where n0
i j = r0

i j/‖r0
i j‖.

Substituting equations (12), (13), and (14) into equation (17) yields
the following expressions for fi j for different materials:

1. Linear elasticity

fi j = cηi j− (3λ+2µ)αθ j (18)

2. Non-linear elasticity

fi j = 2c

(
si j−

1
s3

i j

)
+ c?nsn−1

i j − (3λ+2µ)αθ j (19)

3. Elastoplasticity

fi j =

cηi j− (3λ+2µ)αθ j ηi j < η0

cη
0
i je
(
−β

ηi j−η0
η0

)
− (3λ+2µ)αθ j ηi j ≥ η0

(20)

Eventually, we have the integral-based equation of motion at posi-
tion qi as follows:

miq̈i =
∫

j∈Ωi

fi j
n0

i j

‖r0
i j‖

dA+ fext
i , (21)

where fext
i is external force at position i. As shown above, to derive

equation (21), the condition of continuity is not required. We use
particles to discretize equation (21) and introduce a weight function
as follows:

miq̈i = ∑
j

fi j
n0

i j

‖r0
i j‖

W 0
i jA

0
j + fext

i , (22)

where A0
j is the area of particle j, W 0

i j denotes the weight of particle
j with respect to particle i in the initial configuration and is defined
as:

W 0
i j =

1−
‖r0

i j‖
R

, ‖r0
i j‖ ≤ R

0 , ‖r0
i j‖ ≥ R

(23)

where R is the cutoff radius and different values of R affect the stiff-
ness of the micro-spring. In the present work, we use the stiffness
coefficient c defined in [LBC∗14] as:

c =
18K
πR4 , (24)

where K is the bulk modulus of the material.

4.3. Discrete Equation for Diffusion

To handle fractures, we use the following peridynamic model for
heat transfer proposed in [BD10]:

ρ
0
i C0

i A0
i θ̇i = ∑

j
k

(
θ j−θi

‖r0
i j‖2

+Si

)
W 0

i jA
0
j . (25)
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Figure 7: Crispy and damp seaweed flake. Our method captures symmetric crack patterns in a dry seaweed flake when pulled apart along the
side edges (top) and vividly asymmetric crack branches in a damp seaweed flake (bottom) under the additional effects of moisture diffusion.

4.4. Temporal Discretization

Although implicit schemes have been acknowledged to be more ef-
ficient than explicit schemes and allow for larger time steps in the
simulations, the time step ∆t is required to be small to accurately
capture fractures (which are high-speed events). Thus, we use for-
ward Euler time integration in the present work, and update qi, q̇i,
and θi at time tn+1 as follows:

θ
n+1
i = θ

n
i +

∆t
ρ0

i C0
i A0

i

[
∑

j

(
k

θ
n
j −θ

n
i

‖r0
i j‖2

+Sn
i

)
W 0

i jA
0
j

]

q̇n+1
i = q̇n

i +
∆t
mi

(
∑

j
f n
i j

n0
i j

‖r0
i j‖

W 0
i jA

0
j + fext

i

)
qn+1

i = qn
i +∆tq̇n+1

(26)

where the superscript n denotes variables at time tn.

5. Fracture

Similar to peridynamics, the treatment of discontinuities is trivial
due to the integral-based nature of our method. We model material
damage by permanently breaking the micro-spring for deformation
and diffusion. For elastoplastic materials, a simple critical stretch
is generally used as the fracture criterion in peridynamics, which
conforms to the physically plausible energy release rate, has been
validated before [SA05], and was also utilized in computer graph-
ics [HWW17,LBC∗14]. In the present work, to merge both elastic-
ity and plasticity, we define a parameter γi j featuring the damage of
micro-spring i↔ j as follows:

γi j =


1, ηi j ≤ η0

e−β
η−η0

η0 , ηi j > η0

0, ηi j > ηc

(27)

where η0 denotes the elastic deformation limit and ηc =√
4πG f /9ER denotes the fracture criterion, G f , E, and R are the

material fracture energy, material Young’s modulus, and cutoff ra-
dius, respectively. For elastic materials in equations (18) and (19)
and the diffusion process in equation (25), γi j degenerates to:

γ
?
i j =

{
1, ηi j ≤ ηc

0, ηi j > ηc
(28)

Finally, the update equations considering fracture are given as fol-
lows:

θ
n+1
i = θ

n
i +

∆t
ρ0

i C0
i A0

i

[
∑

j

(
k

θ
n
j −θ

n
i

‖r0
i j‖2

+Sn
i

)(
γ
?
i j
)n W 0

i jA
0
j

]
,

q̇n+1
i = q̇n

i +
∆t
mi

(
∑

j
f n
i j

n0
i j

‖r0
i j‖

γ
n
i jW

0
i jA

0
j + fext

i

)
.

6. Results

We now present the results produced with our method in this sec-
tion. All our membranes are discretized by a single layer of uni-
formly distributed particles, and the cutoff radius for the weight
function in equation (23) is taken as 1.5× the particle distance.
All our examples were run on a 1.80 GHz, Intel(R) Core(TM) i7-
8565K CPU with 8GB RAM. Table 1 summarizes the specific tim-
ings and the parameters used for all our examples.

6.1. Numerical Validation

We first simulate large shearing and stretching deformations in a
thin sheet (without fracture) with a dimension of 2× 2. As shown
in Figure 3, our method produces realistic large deformation of the
thin sheet and captures parallel folds in the shearing case (see Fig-
ure 3(top)). These folds occur because the membrane is free along
the normal direction and therefore, tends to develop strains paral-
lel to the shearing stress. It is worth noting that SPH methods, as
well as other discretization techniques such as FEM, MPM and the
like, provide the numerical approaches to approximate the partial
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(a) (b)
Figure 8: Experimental validation. Our method can qualitatively capture the clean tear in a dry paper towel (a) and heterogeneous fracture
in a wet paper towel (b). The real-world images are shown on the left, and simulated images using our formulation are shown on the right.

Table 1: We provide a list of the main parameters used in our sim-
ulations. E: Young’s modulus, µ: Poisson’s ratio, ρ: Density, C:
Diffusive capacity, k: Coefficient of diffusion, α: Coefficient of lin-
ear diffusion expansion, G f : Material fracture energy, η0: Elastic
deformation thread, ∆t: Time step, and ∆x: Initial particle distance.
All simulations were run on on a 1.80 GHz, Intel(R) Core(TM) i7-
8565K CPU with 8GB RAM. The simulation time is measured in
average seconds per 20 time steps. Particle: The total number of
particles in the simulation.

Parameters Large stretching
and Shearing

Crack
path Foil Rubbery

Film Seaweed

E(Pa) 2×104 2×104 2×103 102 2×104

ν 0.3 0.3 0.3 0.3 0.3
ρ(kg/m3) 5000 5000 5000 100 100
C (J· K −1) NA 1 1 1 1
k (W/(m·K)) NA 0.01 0.3 1 0.01
α (K−1) NA 1 0.3 10 0.3
G f NA 11.3 1.2 11.3 2.4
η0 NA 10−4 10−4 10−3 10−4

∆t (s) 10−4 10−4 3×10−4 5×10−4 10−4

∆x (m) 0.02 0.02 0.04 0.04 0.04
Particle 10K 10K 2.5K 2.5K 2.5K
Time(s) 0.2 0.2 0.6 0.2 0.2

X

Y

0.835

0.844

0.853

0.862

0.870

0.2 0.3 0.4 0.5 0.6 0.7
X

Y

1.550

1.575

1.600

1.625

1.650

1.6 1.7 1.8 1.9 2.0 2.1

Figure 9: XY trajectory of particles. (Left) P1 (0.64, 0.84). (Right)
P2 (1.64, 1.64). Our method (black) produces more dynamic mo-
tion compared with Smoothed Particle Hydrodynamics (SPH) (red).

differential equations. Using a PDE-based model, it is challenging
to evaluate the derivative along the normal direction as we only use
one layer of particles to discretize the sheet. Consequently, those
PDE-based methods may not be able to capture the folds in the
shearing cases and the wrinkles along the edges of a crack (see
Figure 5). In contrast, our proposed integral-based model does not

involve the evaluation of differential derivatives, which is essential
in PDE-based models which also require the physical field to be
sufficiently smooth, and can naturally handle fractures and defor-
mations along the normal direction.

In order to validate our proposed method, we focus on the mo-
tion in the XY plane in the large stretching case. We plot the
XY trajectory of the particles located at positions P1(0.64, 0.84)
and P2(1.64, 1.64) on the sheet obtained using the proposed La-
grangian particle-based formulation and standard Smoothed Parti-
cle Hydrodynamics (SPH) [LL03]. Figure 9 shows that our results
are close to the results from SPH as the differences occur at a very
small order of magnitude, while the trajectory obtained by the pro-
posed method is more dynamic. Our method captures more realistic
stretching deformation as shown in Figure 10.

Figure 10: Comparison between SPH and the proposed method.
Our method (right) captures more realistic stretching deformation
of an elastic sheet than that obtained by standard SPH (left).

6.2. Crack path

To demonstrate the effects of diffusion evolution on crack branches,
we put two sources that diffuse material in a pre-notched thin brittle
membrane under tensile loading. Due to the existence of diffusion,
extra diffusion-driven stress is introduced to material constitutive
laws, leading to the heterogeneously dynamic responses and arbi-
trary fracture patterns in the membrane. Figure 2 shows that straight
cracks grow in the membrane without diffusion, while the crack
tip in the membrane with diffusion changes its path and initiates
small branches, showcasing a zigzag propagation of the crack. Fig-
ure 2(bottom) visualizes the diffusive quantities colored from light
red to dark red in the order of increasing values.

6.3. Tearing foil and paper towel

To demonstrate fracture due to out-of-plane motions, we simulated
the tearing of aluminum foils with prescribed velocity boundary
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conditions on the top edges, as shown in Figure 4. Our Lagrangian
particle-based formulation can easily handle the out-of-plane mo-
tion while preserving fine details. A “clean” tear was captured in
Figure 4 (top) in the absence of diffusion effects. We heated the
foil by randomly distributed heat sources on the sheet and simu-
lated the coupling of deformation and heat transfer. In this case, the
crack path branches as the temperature changes. Next, as shown in
Figure 8, we compared our simulations of tearing dry and wet paper
towels with real-world experiments. Our method can qualitatively
reproduce straight crack paths of the dry paper towel and irregular
crack paths of the wet paper towel, as observed in the real world.

6.4. Rubbery film

Next, we stretch a rubbery film (e.g., a biodegradable
film [VBP∗20]) using our Lagrangian particle-based formulation
with the non-linear elastic constitutive model in equation (19).
Figure 5(top) shows how the slit evolves into a dynamic crack
as time goes by. At the beginning, the slit has not yet started to
grow, wrinkles are visible along the slit edges (see left column
in Figure 5). The wrinkles occur because the membrane is free
along the edges normal to the slit and, thus, tends to develop
compressive strains parallel to the slit. In the remaining views
shown in Figure 5, the crack is propagating and wrinkles appear
in the wake of the crack. To demonstrate the effects of diffusion,
we spray acid solvent on the film. Due to biodegradability, the
film begins to dissolve and subsequently leads to heterogeneous
fracture patterns, as shown in Figure 5(bottom).

6.5. Seaweed flake

Our method can also be used to simulate realistically brittle mem-
branes, such as seaweed flakes. As shown in Figure 7, a crispy
seaweed flake was ripped abruptly. Our Lagrangian particle-based
formulation captures vivid brittle fractures displaying symmetric
crack patterns, as they grow and branch in a dry seaweed flake (see
Figure 7(top)). In contrast, the crack tip in a damp seaweed flake
changes its path and exhibits asymmetric crack paths (see Figure 7
(bottom)) due to moisture diffusion.

Figure 11: Effect of long-range force (Non-locality). Grey: R =
0.0681, Light pink: R = 0.0749, Soft red: R = 0.0851, Dark orange
R = 0.0953, and Dark green R = 0.102. Our model also shows
that long-range forces introduce non-local effects that lead to stiffer
material responses, which agree with the observation in [SNRS17].

6.6. Non-local effect

Our method leads to a non-local model and captures different frac-
ture patterns due to long-range forces. Via tuning the cutoff radius

R in equation (23), the non-local effect is introduced by consid-
ering the interaction with more particles in comparison to its lo-
cal counterpart. We demonstrated that, in the case with long-range
forces, the crack grows slower and shows multiple polyline-like
patterns, while in cases with less particle interactions, the crack
propagates abruptly and demonstrates clean fracture patterns. Our
model with large long-range forces gives stiffer material responses,
which agree with the observations in 1D for dynamic beam simu-
lation [SNRS17].

7. Discussions and Conclusion

We proposed a Lagrangian particle-based formulation to simulate
fractures in thin membrane-like structures. To simulate the hetero-
geneity in materials that is introduced due to diffusion, we derived
a unified framework for coupling together deformation and diffu-
sion. We demonstrated that our method captures realistic fracture
propagation in a wide range of materials, such as aluminum foils,
rubbery films, and seaweed flakes, and produces more detailed and
realistic effects of arbitrary crack branches due to diffusion pro-
cesses in practical applications.

7.1. Limitations

Our model has generated a large number of compelling examples,
but there remains much work to be done. Parameters to adjust the
plasticity were tuned by hand, and it would be interesting to cali-
brate them to measured models. While explicit time integration is
a reasonable treatment given that small time steps are required for
capturing cracks, it would be interesting to incorporate multi-rate
time integration schemes, such as [FHHJ18,GB14], into our frame-
work to support different time steps on different subdomains of the
material. Another limitation of our work stems from the particle

Figure 12: Comparison between particles and mesh. (Left) Sur-
face mesh generated by Houdini [Sid20]. (Right) Raw data of par-
ticles. Our raw data of particles provides more realistic details of
cracks along the tear and the subtle wrinkles on the membrane sur-
face, which the mesh generated by Houdini fails to capture.

discretization for crack surface representation. The level of crack
detail is highly dependent on the embedded particle resolution. A
more detailed crack surface could benefit from a multi-resolution
particle discretization, such as [WHK17]. In our stretching simu-
lations (see Figure 3), we also found that our method suffers from
area loss as shown by the linear growth in average divergence of
the velocity field in Figure 13. As our Lagrangian particle-based
formulation is similar to bond-based Peridynamics [GSS05,Sil00],
the restriction on Poisson’s ratio of 1/4 for plane strain and 1/3 for

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.



C. Han, T. Xue & M. Aanjaneya / Lagrangian Particle-based Coupled Simulation of Fracture and Diffusion in Thin Membranes

plane stress in bond-based Peridynamics also exists in our method,
making it unable to enforce incompressibility in a precise fashion.
It would be interesting to investigate our method based on state-
based Peridynamics that can circumvent this restriction on Pois-
son’s ratio. Additionally, meshing with particles also poses a chal-
lenge. We used Houdini [Sid20] to generate a surface mesh using
our particle data. Although these surfaces can demonstrate the in-
fluence of diffusion on the crack path, they fail to extract all infor-
mation that our simulation provides and may lead to local inversion
and numerical noise. This leads to the loss of some subtle details of
fractures and wrinkles in the mesh, as shown in Figure 12(left). Our
raw data of particles in Figure 12(right), and also in Figure 8, pro-
duces realistic wrinkles and crack branches at small scales, while
the surface generated by Houdini [Sid20] smooths out these de-
tails. Finally, while our focus was on the material responses of an
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Figure 13: Velocity divergence for large stretching in Figure 3.

aluminium foil, a rubbery film, and a crispy seaweed flake, it would
be interesting to investigate other material behaviors and diffusion-
dependent material properties.
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Appendix A: Comparison with classical elastic material

Consider homogeneous deformation as F = I+∇u for membrane-
like structures, where u denotes the displacement and assume that
in some Cartesian coordinate system the components of F are given
by:

F =

[
λ1 0
0 λ2

]
(29)

where λ1 and λ2 are the principal stretches, and the out-of-plane
stretch is ignored as the out-of-plane stress component vanishes
in membrane-like structures. The bulk response of particle i will
be determined by finding the strain energy Ψ(F) per unit volume
contained in all the micro-bonds connected to particle i in the body.
Now we can rewrite the bond stretch in equation (10) based on
equation (29),

si j =

∥∥ri j
∥∥∥∥∥r0

i j

∥∥∥ =

√
λ2

1 cos2 θ+λ2
2 sin2

θ (30)

Based on the strain energy in [Sil00], we have the following inte-
gration form of the strain energy:

Ψ(F)= h
2

∫ δ

0

∫ 2π

0
φ(s(θ,r))rdθdr =

πhcR
2

(
λ

2
1 +λ

2
2 +

2
λ1λ2

−4
)

(31)
where φ(s(θ,r)) represents the strain energy of a micro-bond and
the influence radius R can be defined as follows:

R =
∫ δ

0
rW (r)dr (32)

where W (r) denotes the weighted function in equation (23). The
macroscopic strain energy density Ψ(F) in equation (31) depends
only on the two principle stretches and does not explicitly include
any out-of-plane stretch. However, this Ψ(F) can be further ex-
pressed as follows:

Ψ(F) = πhcR
2

(
λ

2
1 +λ

2
2 +λ

2
3 +

1
λ1λ2λ3

−4
)

(33)

where λ3 represents the out-of-plane stretch. The material spec-
ified in equation (33) is a special case for the Blatz-Ko materi-
als, which has been widely used to describe materials like rub-
ber [BK62, Ogd72, Tre44].

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.


