
Maximum Consensus Floating Point Solutions for Infeasible
Low-Dimensional Linear Programs with Convex Hull as the
Intermediate Representation

MRIDUL AANJANEYA, Rutgers University, USA

SANTOSH NAGARAKATTE, Rutgers University, USA

This paper proposes a novel method to e�ciently solve infeasible low-dimensional linear programs (LDLPs)
with billions of constraints and a small number of unknown variables, where all the constraints cannot be
satis�ed simultaneously. We focus on infeasible linear programs generated in the RLibm project for creating
correctly rounded math libraries. Speci�cally, we are interested in generating a �oating point solution that
satis�es the maximum number of constraints. None of the existing methods can solve such large linear
programs while producing �oating point solutions.

We observe that the convex hull can serve as an intermediate representation (IR) for solving infeasible
LDLPs using the geometric duality between linear programs and convex hulls. Speci�cally, some of the
constraints that correspond to points on the convex hull are precisely those constraints that make the linear
program infeasible. Our key idea is to split the entire set of constraints into two subsets using the convex
hull IR: (a) a set X of feasible constraints and (b) a superset V of infeasible constraints. Using the special
structure of the RLibm constraints and the presence of a method to check whether a system is feasible or not,
we identify a superset of infeasible constraints by computing the convex hull in 2-dimensions. Subsequently,
we identify the key constraints (i.e., basis constraints) in the set of feasible constraints X and use them to
create a new linear program whose solution identi�es the maximum set of constraints satis�able in V while
satisfying all the constraints in X. This new solver enabled us to improve the performance of the resulting
RLibm polynomials while solving the corresponding linear programs signi�cantly faster.

CCS Concepts: • Mathematics of computing→ Solvers.

Additional Key Words and Phrases: RLIBM, infeasible linear programs, convex hull, math libraries

ACM Reference Format:

Mridul Aanjaneya and Santosh Nagarakatte. 2024. Maximum Consensus Floating Point Solutions for Infeasible
Low-Dimensional Linear Programs with Convex Hull as the Intermediate Representation. Proc. ACM Program.

Lang. 8, PLDI, Article 197 (June 2024), 25 pages. https://doi.org/10.1145/3656427

1 INTRODUCTION

Linear programs (LPs) arise in many domains, such as robotics [13, 47], databases [10], machine
learning [41, 48, 53, 61], computer graphics [32], etc. They are also widely used in the programming
languages community for analyzing vulnerabilities in C source code [26], designing correctly
rounded math libraries [2, 3, 37, 38, 40], repair of deep neural networks [52, 55], Presburger
arithmetic for polyhedral compilation [46], and many other problems. A linear program is called
feasible if all the constraints can be satis�ed simultaneously, otherwise, it is called infeasible.
Given the widespread use of linear programs, numerous seminal algorithms and methods have

Authors’ addresses: Mridul Aanjaneya, Rutgers University, Piscataway, USA, mridul.aanjaneya@rutgers.edu; Santosh
Nagarakatte, Rutgers University, Piscataway, USA, santosh.nagarakatte@cs.rutgers.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for pro�t or commercial advantage and that copies bear this notice and
the full citation on the �rst page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).

© 2024 Copyright held by the owner/author(s).
ACM 2475-1421/2024/6-ART197
https://doi.org/10.1145/3656427

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 197. Publication date: June 2024.

This work is licensed under a Creative Commons Attribution 4.0 International License.

https://creativecommons.org/licenses/by/4.0/
HTTPS://ORCID.ORG/0000-0002-5286-8173
HTTPS://ORCID.ORG/0000-0002-5048-8548
https://doi.org/10.1145/3656427
https://orcid.org/0000-0002-5286-8173
https://orcid.org/0000-0002-5048-8548
https://orcid.org/0000-0002-5048-8548
https://doi.org/10.1145/3656427

197:2 Mridul Aanjaneya and Santosh Nagaraka�e

been developed to solve linear programs with real values [59]. Modern solvers can easily solve
linear programs with several thousand constraints. However, linear programs that have billions of
constraints and a large number of variables are beyond the capabilities of modern LP solvers.

Low-dimensional linear programs.A class of linear programs known as low-dimensional linear

programs (LDLPs) have a large number of constraints in comparison to the number of variables. Low-
dimensional linear programs arise in the design of correctly-rounded math libraries [2, 37, 38, 40],
fast training of support vector machines (SVMs) for regression and classi�cation in machine
learning [7–9], and parametric model �tting for 3D reconstruction and inverse procedural mod-
eling [27, 36, 57]. Meggido [42], Clarkson [20], and Seidel [51] have designed seminal e�ective
algorithms for feasible low-dimensional linear programs with real values. However, generating
solutions with �oating-point coe�cients is still a challenge.
Maximum consensus solutions. In many domains, it is necessary to �nd a solution that

satis�es the maximum number of constraints of an infeasible linear program - this solution is
known as the maximum consensus solution [15, 35, 62]. For infeasible linear programs, the problem
of computing the solution that satis�es the maximum number of constraints is known to be NP-
hard [49] even when solutions are explored with real values. The problem of �nding solutions
with a machine-supported representation, such as the �oating point (FP) representation, is even
more challenging. In the context of LDLPs with billions of constraints, existing algorithms do not
identify maximum consensus solutions for infeasible linear programs.
LDLPs in the RLibm project. In this paper, we focus on LDLPs in the context of the RLibm

project [37, 40], which computes polynomial approximations for elementary functions that produce
the correctly rounded result for all �oating point inputs. The RLibm project makes a case for
approximating the correctly rounded result instead of the real value, the key insight being that
there is an interval of real values around the correctly rounded result such that any value in this
interval rounds to the correct result (see Figure 1). This interval bounds the results of the polynomial
approximation being generated. The RLibm project uses these intervals for every input to create a
linear program and generate polynomial approximations of a particular degree by solving them.
This linear program is an LDLP because there can be a few billion constraints corresponding to
inputs in the 32-bit FP representation but the number of variables (which are the coe�cients of
the polynomial approximation) are small. The resulting linear programs in the RLibm project are
infeasible linear programs for a signi�cant number of elementary functions. Further, the RLibm
project attempts to produce a single polynomial approximation that produces correct results for
multiple representations and rounding modes by approximating the round-to-odd result [40], which
produces more constrained intervals and is also a reason behind infeasible linear programs.

In the presence of infeasible linear programs, the RLibm project attempts to generate a solution
that satis�es the majority of constraints. Each constraint that is not satis�ed by the obtained solution
is added as a special case using branch statements (i.e., biased branches with __builtin_expect

intrinsics). These special cases reduce the performance of the resulting math libraries.
This paper. We propose a novel method to produce FP solutions that satisfy the maximum

number of constraints in an infeasible low-dimensional linear program with a large number of
constraints. To solve this problem, our high-level strategy is to split the entire universe of constraints
(A) into two sets: (1) a set of feasible constraints (X) and (2) a small superset of infeasible constraints
(V). Given a system of LDLP constraints, we have a method to check if the system is feasible or
not. We use the adaptations of the Clarkson’s method from the RLibm project [2, 20] to check if the
system is a feasible LDLP.

Once, we generate these two sets, we can borrow ideas from themaximum consensus formulations

from the computer vision community [34] to create another linear program for the constraints in
the second set (i.e.,V) with slack variables, such that the solution to the modi�ed linear program

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 197. Publication date: June 2024.

Maximum Consensus FP Solutions for Infeasible LDLPs with Convex Hull as the IR 197:3

satis�es all constraints in the �rst set (i.e., X) and the slack variables allow some of the additional
constraints in the second set to be satis�ed. In contrast to our approach, the prior maximum
consensus formulation [34] cannot be directly applied to the entire set of constraints because it
destroys the low-dimensional nature of the linear program. The resulting linear program that has
billions of constraints without the low-dimensional nature cannot be solved by any existing solver.

Convex hull as the intermediate representation. To split the set of constraints into the two
sets described above, our idea is to use the convex hull as the intermediate representation (IR).
Speci�cally, we exploit the geometric duality [14, 30] between linear programs and convex hulls
and observe that some of the constraints that correspond to points on the convex hull are precisely
those constraints that make the low-dimensional linear program infeasible. We compute the convex
hull V of the entire system of constraints. Then, we split A into V and X = A − V . We use
the RLibm’s adaptation of the Clarkson’s method to check if X is a feasible LDLP. If so, we have
split the entire set of constraints A into a feasible LDLP X and a superset of violated constraints
V . Otherwise, we iteratively compute the convex hull of the set X and the new set of violated
constraintsV ′. If the set X −V ′ is a feasible LDLP, then we have found our partition andV ∪V ′

is the superset of the infeasible constraints. The above procedure continues until we end up with a
feasible LDLP. This procedure terminates as A is �nite.

Exactly computing the convex hull of = points that are embedded in the :-dimensional Euclidean
space R: has an asymptotic run-time complexity of $ (=:) [22], which makes it intractable when
= is in the order of billions. To address this issue, we observe that the RLibm constraints have a
special structure and utilize it to make the problem tractable. The RLibm linear constraint for an
input G is of the form, ; ≤ �0 +�1G +�2G

2 +�3G
3 + .. +�:G

: ≤ ℎ, where�8 ’s are unknowns and ;/ℎ
represents lower/upper bounds of the rounding interval (see Section 2.1). Using geometric duality
transformations (see Section 2.3), these constraints represent the points, (G , G2, G3, ..., G3 , ;) or (G , G2,
G3, ..., G3 , ℎ), whose convex hull is being computed in our approach. We observe that these points
are intrinsically 2-dimensional because the points (G , G2, G3, ..., G3) are parameterized by a single
parameter G and represent a 1-dimensional curve in high dimensions. Further, ; (or ℎ) indicates the
freedom to satisfy the constraint. Hence, we propose to project points in R: to a 2-dimensional
space (i.e., R2) and compute the convex hull in R2. The complexity of computing the convex hull
of = points in R2 with our projections is $ (:= log �), where � is the number of points on the
convex hull [33]. This makes our approach extremely fast in practice and can still handle billions
of constraints. Theoretically, we have to compute the convex hull with 2-D projections iteratively
to identify the superset of infeasible constraints in A. Empirically, we found that computing the
convex hull with a 2-D projection identi�ed a small superset of the infeasible constraints in A in a
single iteration.

Our prototype can solve infeasible linear programs with billions of constraints signi�cantly faster
while producing the best solutions. Using the solutions from our solver, we have also improved the
performance of correctly rounded RLibm’s math libraries.

2 BACKGROUND ON LINEAR PROGRAMS IN THE RLIBM PROJECT

We provide background on our RLibm project, the linear programs generated with the RLibm

approach, and the notion of geometric duality between convex hulls and linear programs that will
be necessary to understand our solution for infeasible linear programs.

2.1 The RLibm Project

The RLibm project proposes a new method to build correctly rounded math libraries by generating
polynomial approximations that approximate the correctly rounded result rather than the real value

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 197. Publication date: June 2024.

197:4 Mridul Aanjaneya and Santosh Nagaraka�e

v1 v2 v3

Correctly Rounded Result

f(x)

Rounding interval

(A) Correctly rounded result and the rounding interval (B) The linear constraint in the RLIBM project

;8 ≤ 21 + 22G8 + 23G
2

8
+ . . . + 23G

3−1

8
≤ ℎ8

will canonicalize the above constraint with just one inequality in each

;8
−1

≤ ℎ8

Fig. 1. (A) The rounding interval of a correctly rounded result v2. (B) The linear constraint generated to

produce a correctly rounded result for input G8 where the interval [;8 , ℎ8] is 1 ULP (units in the last place).

of an elementary function [2, 3, 37, 38, 40]. Typically, the implementation of a correctly rounded
function for a 32-bit �oat representation uses the 64-bit double precision representation internally.
Given a correctly rounded result for a 32-bit �oat input, there is an interval of values in the double
precision representation around the correctly rounded result such that any value in that interval
rounds to the correctly rounded value (see Figure 1(A)), which is called the rounding interval. The
rounding interval for an input G8 is represented as [;8 , ℎ8], where ;8 is the lower bound and ℎ8 is the
upper bound. When the goal is to generate a polynomial of degree 3 − 1 with 3 terms, the rounding
interval speci�es the linear constraint shown in Figure 1(B) on the result of the polynomial for
input G8 . The RLibm project generates a system of linear inequalities corresponding to all 32-bit
inputs and their corresponding rounding intervals. Then, the goal is to identify the coe�cients (i.e.,
28 ’s) of a polynomial of a particular degree that satis�es these inequalities. The RLibm project uses
an LP solver to solve this system of inequalities.

Before generating such polynomial approximations, it is necessary to reduce the original input
from the domain of a 32-bit �oat representation (i.e., [2−150, 2128)] to a small domain (e.g., [0, 1]).
This step is called range reduction. The original input G is range reduced to G ′. Subsequently,
the polynomial that we wish to generate approximates the result for G ′, which is then output
compensated to compute the �nal output for G . The RLibm project uses speci�c range reduction
methods that ensure that the reduced inputs are positive, which we leverage in our approach.
The RLibm project has also proposed a method to generate a single polynomial approximation

that can produce correctly rounded results for all FP representations up to =-bits [40]. The key idea
is to generate a polynomial that produces correctly rounded results for the (= + 2)-bit representation
(which has 2 additional precision bits compared to the =-bit representation) using the round-to-odd
rounding mode. When that result is double-rounded to any representation with less than =-bits, it
produces correct results for the target representation. The system of linear constraints generated
to produce correctly rounded results for the (= + 2)-bit representation with the round-to-odd mode
for all inputs also makes them infeasible in many cases.

2.2 Solving Low-Dimensional Linear Programs

The trajectory of our RLibm project has been shaped by the ability to solve linear programs with
billions of constraints. Initially the RLibm project used piecewise polynomials because there were no
publicly available solvers that could handle such a large number of constraints. Another challenging
issue is to generate �oating-point (FP) solutions because a real-valued solution from an LP solver
when rounded to the FP representation may not satisfy all the constraints.

Given a reduced input G8 and its rounding interval [;8 , ℎ8], the linear constraint generated to
create a polynomial of degree 3 − 1 with 3 terms is shown in Figure 1(B). We will canonicalize the
above constraint in the standard LP format that has just one inequality in each constraint. Putting
all the unknown polynomial coe�cients in a column vector) , the constraint in Figure 1(B) can be
re-written in the following equivalent form:

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 197. Publication date: June 2024.

Maximum Consensus FP Solutions for Infeasible LDLPs with Convex Hull as the IR 197:5

a
Z
i) − ℎ8 ≤ 0

a
Z
i+1) + ;8 ≤ 0

where the row vector aZi = [1, G8 , G
2
8 . . . , G

3−1
8] and a

Z
i+1 = [−1,−G1,−G

2
8 . . . ,−G

3−1
8].

There are two inequalities for each RLibm constraint after canonicalization. The number of
unknown variables (i.e., 28 ’s) is also known as the dimension of the linear system.
Low-dimensional linear program. When the dimension : of \ is much smaller than the

number of constraints, then the linear program is called a low-dimensional linear program (LDLP).
There is a large amount of redundancy in LDLPs, in the sense that a few key constraints determine
the solution for all the other constraints [19].

Solving feasible low-dimensional linear programs. The seminal results from Meggido [42]
and Clarkson [20] describe algorithms to solve large feasible LDLPs. If the LDLP is feasible, then the
small dimension property can be used to design a fast randomized algorithm [20] for computing the
solution with real values. The RLibm project uses Clarkson’s method [20] to solve feasible LDLPs
with �oating-point solutions [2]. The essence of this algorithm is to employ weighted random
sampling [23] to choose a small subset of 6:2 constraints S from the entire set of constraints A. It
associates a weight with each constraint. Initially the weight is 1 for all constraints. The algorithm
is as follows:

• Step 1. Sample S constraints from A with weighted random sampling where |S| = 6:2,
where : is the number of terms in the polynomial.

• Step 2: Solve the sample S optimally using an LP solver to compute the sample solution x
★.

• Step 3: Exit if x★ satis�es all constraints in A, otherwise check how many constraints of A
are not satis�ed by x

★. If the sum of the weights of the violated constraints is less than or
equal to 1/(3: − 1) fraction of the combined sum of the weights of constraints satis�ed by
x
★, then discard this sample and go to Step 1. Otherwise, double the weights of all violated
constraints and then go to Step 1.

These three steps are repeated until a solution x
★ satis�es all constraints in A. Clarkson [20]

provides seminal results on the convergence of this procedure. Speci�cally, with probability at least
1/2, x★ can only violate 1/3: constraints in A. In other words, the above procedure converges to a
solution that satis�es all the constraints in A in 6: log= iterations in expectation.
To solve feasible LDLPs with the above algorithm, the RLibm project uses the SOPLEX solver

to generate the solution for the sample. SOPLEX solves the sample with real values (i.e., with
GMP rational numbers). When the sample solution is rounded to �oating point coe�cients, some
constraints in the sample may not be satis�ed. In such cases, the RLibm project restricts the intervals
to check if the sample can still be solved. The need to generate a �oating point solution can also
turn the feasible LDLP into an infeasible LDLP.

What happens with infeasible LDLPs?When the LDLP is infeasible, Clarkson’s algorithm [20]
adapted by the RLibm project is not guaranteed to converge to a solution. Running more iterations
of the above algorithm with an infeasible LDLP does not help in reducing the number of constraints
violated by the sample solution. The above algorithm uses weighted random sampling and doubles
theweight for the violated constraints. Although this doubling of weights for the violated constraints
increases the probability of them being selected in the next sample, the entire sample becomes
infeasible. In many LDLPs, it fails to generate an acceptable solution that satis�es the maximum
number of constraints. In fact, the state-of-the-art approach is to run this algorithm for a su�ciently
long time and choose the best result that has been generated so far.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 197. Publication date: June 2024.

197:6 Mridul Aanjaneya and Santosh Nagaraka�e

2.3 Geometric Duality and Linear Programming

Our proposedmethod to solve infeasible LDLPs uses ideas from computational geometry, speci�cally
the geometric duality transformations between points and lines. We provide a brief background on
it. We refer the reader to excellent books on this subject for detailed information [11, 30].

Geometric duality transformations. For simplicity of exposition, consider the 2-D case �rst.
A geometric duality 3 : R2 → R2 is a transformation that maps a set of lines to a set of points and
vice versa, in a one-to-one manner. Let ? = (0, 1) be a 2-D point, then the dual of ? is denoted by
?★ and is de�ned as the line ~ = 0G −1. The dual of a line ~ =<G + 2 is de�ned as the point (<,−2).
Duality transformations have several nice properties that can be useful for analyzing geometric
structures. For example, duality transforms are incidence preserving, i.e., a point ? lies on a line ; if
and only if the dual point ;★ lies on the dual line ?★. Duality transforms are also order preserving,
i.e., a point ? lies above a line ; if and only if the dual point ;★ lies above the dual line ?★. Geometric
duality allows one to reason about lines by converting the problem into another equivalent problem
about points.

Primal Plane

l

l l

1

2 3

Dual Plane

l1

l2

l3

Fig. 2. Lines ;1, ;2, ;3 are approximately concurrent in

the primal space if and only if the points ;★1 , ;
★

2 , ;
★

3 are

approximately collinear in the dual space.

For example, three lines ;1, ;2 and ;3 are con-
current in the primal space if their dual points
;★1 , ;

★

2 and ;★3 are collinear in the dual space.
More generally, three lines ;1, ;2 and ;3 are ap-
proximately concurrent in the primal space if
their corresponding dual points ;★1 , ;

★

2 and ;★3
are approximately collinear in the dual space,
as shown in Figure 2. The latter problem can be
e�ciently solved using linear regression. A pop-
ular result in computational geometry, which
our proposed approach builds upon, is that the
lower envelope of an arrangement of lines (i.e.,
the lowest partition of R2 that is produced by
the arrangement) corresponds to the upper convex hull of the dual points [12], as shown in Fig-
ure 4(B). In 3 > 2 dimensions, geometric duality 3 : R3 → R3 maps a hyperplane ℎ to a point ℎ★

and vice versa, as de�ned below:

ℎ ≔ 081G1 + 082G2 + . . . + 083G3 − 18 = 0 ⇔ ℎ★ ≔ (081, 082, . . . , 083 , 18) (1)

Visualizing Linear Programs through the lens of Geometric Duality. For visualizing
constraints in an LDLP from a geometric viewpoint, consider the constraint below:

081G1 + 082G2 + . . . + 083G3 ≤ 18 (2)

Fig. 3. The shaded region denotes the solution space

for an LDLP that is bounded from above by upper half-

spaces (red) and from below by lower halfspaces (blue).

Equation (2) represents a halfspace in R3 , i.e.,
a partition of R3 into two pieces by a hyper-
plane that only includes one piece. If the coef-
�cients 081, . . . , 083 are all positive, then equa-
tion (2) describes an upper halfspace, i.e., it is
bounded from above, as shown in Figure 4(A)(b).
Similarly, if the coe�cients 081, . . . , 083 are all
negative, then equation (2) describes a lower
halfspace, i.e., it is bounded from below, as
shown in Figure 4(A)(a). Thus, the solution
space for a system of linear constraints, which
is the intersection of all these halfspaces, can

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 197. Publication date: June 2024.

Maximum Consensus FP Solutions for Infeasible LDLPs with Convex Hull as the IR 197:7

lower envelope

upper convex hull

(a) (b)

admissible region

admissible region

(A) Interpreting constraints as half spaces (B) Mapping the lower envelope of half spaces to the upper convex hull

Fig. 4. We use geometric duality transforms to map halfspaces to points in a dual space. Then we can compute

the lower envelope of the halfspaces by computing the upper convex hull of the points in the dual space.

Fig. 5. Our approach to generate an FP solution for an infeasible LDLP that satisfies the maximum number

of constraints. The first step is to split the entire set of constraints (A) into two sets X1 and V1 where X1 is

a feasible LDLP. Using the convex hull as the IR, we compute the superset of the infeasible constraints,V1,

using geometric duality. Second, we use the basis of the solution for X1 (i.e., B-1
) and a new linear program

with slack variables that satisfies the maximum number of constraints inV1 to get a new feasible LDLP X

and a small setV . Third, we perform an iterative algorithm with weighted random sampling from X with the

maximum consensus formulation for constraints in V to produce an FP solution that satisfies the maximum

number of constraints in A.

be viewed as being bounded from above by upper halfspaces, and being bounded from below by
lower halfspaces, as shown in Figure 3. Constraints that border the solution space are precisely the
set of key constraints that determine the solution for all the other constraints. This visualization also
presents an opportunity to e�ciently compute the set of constraints that border the solution space.
Speci�cally, if we only consider the set of upper halfspaces, then their lower envelope corresponds
to the set of constraints that border the solution space (see Figure 3). This lower envelope can be
e�ciently computed using the upper convex hull of the dual points [12], as shown in Figure 4(B).
In a similar fashion, the set of lower halfspaces that border the solution space can be e�ciently
identi�ed by computing the upper envelope of the lower halfspaces, which corresponds to the
lower convex hull of the dual points.
Identifying infeasible constraints in an LDLP. For an infeasible LDLP, the shaded region

shown in Figure 3 does not exist, or in other words, the intersection of the lower envelope of the
upper halfspaces and the upper envelope of the lower halfspaces is empty. In this case, identifying
the two envelopes can still provide crucial information regarding the set of constraints that make
the LDLP infeasible. Speci�cally, constraints that border the two envelopes are the most con�icting
constraints, and removing them is the �rst step towards making the LDLP feasible. If the LDLP is
still infeasible, then this process can be repeated until the LDLP becomes feasible (see Figure 6).

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 197. Publication date: June 2024.

197:8 Mridul Aanjaneya and Santosh Nagaraka�e

3 AN OVERVIEW OF OUR APPROACH

Given an infeasible low-dimensional linear program with a large number of constraints (i.e., billions
of them) but with a small number of unknown variables, our goal is to �nd a �oating point solution
that satis�es the maximum number of constraints. Our approach is motivated by such infeasible
LDLPs generated in the RLibm project to generate polynomial approximations with �oating point
coe�cients to produce correctly rounded math libraries. This section provides an overview of our
approach before going into the details in the subsequent sections (as illustrated in Figure 5).

Existingmethods for infeasible LDLPs. Since we have an infeasible linear program, there does
not exist a single solution that satis�es all the constraints. Our work is inspired by the maximum
consensus formulations in the computer vision community where they create another feasible linear
program by using slack variables whose solution satis�es the maximum number of constraints in
the original linear program [34]. This approach creates four additional constraints for each original
linear constraint and destroys the low-dimensional nature of the linear program. Hence, it works
only with a small number of constraints typically in the order of thousands of constraints. When
we tried that formulation with our infeasible LDLPs, it could not produce a solution even with real
values. The huge number of constraints requires us to explore linear or near-linear time algorithms
(i.e., even an algorithm with a time complexity of $ (=2) makes it impractical for our purposes)
while preserving the low-dimensional nature of the linear program.

Insights. Our high-level idea to solve infeasible LDLPs with a large number of constraints is
to partition the set of constraints into two sets: a set of constraints that is feasible and a small
superset of infeasible constraints that makes the original set infeasible. This partitioning enables
us to intelligently combine existing solvers for feasible LDLPs from the RLibm project [2] and the
maximum consensus formulation from the vision community [34] to produce maximum consensus
solutions for infeasible LDLPs with approximately billions of constraints. Figure 5 illustrates our
approach to solve a large infeasible LDLP in the RLibm context. The research challenges that we
have to address are the following: (1) how do we perform the above partitioning quickly? (2) how
do we combine the maximum consensus formulation that handles small number of constraints
with the solver for feasible LDLPs such that we can generate maximum consensus solutions for a
system with billions of constraints?

3.1 Convex Hull as the IR to Create a Feasible LDLP

One of the key ideas of this paper is to use the convex hull as the intermediate representation (IR)
to perform the partitioning of the constraints. Geometric duality transforms, which we described
in Section 2, allow us to represent a linear constraint as a point in the dual space. Then, �nding the
feasible region (i.e., a solution) for all the constraints can be done by identifying the convex hull
in the dual space. Thus, we use the convex hull as the IR to solve large infeasible LDLPs. It also
enables us to perform further optimizations and approximations that would not have been feasible
otherwise, similar to how compiler IRs enable canonicalization, optimization, and approximation
while compiling high-level languages.

We represent every linear constraint as a point in the dual space. Subsequently, we identify the
upper hull of the points in the dual space corresponding to the constraints that specify the lower
bound and identify the lower hull of the points in the dual space corresponding to the constraints
that specify the upper bound. Our insight is that the constraints that make the LDLP infeasible must

lie either on the upper or the lower hull in the dual space (see Figure 6).

Given the original set of constraints A, we compute the lower hull L and the upper hull U,
and their union i.e., V1 = L ∪U. Subsequently, we compute the set X1 = A −V1. We check if the
set X1 is a feasible LDLP using the Clarkson method adapted to the RLibm context [2]. If so, we

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 197. Publication date: June 2024.

Maximum Consensus FP Solutions for Infeasible LDLPs with Convex Hull as the IR 197:9

Feasible region defined by
lower half space constraints

Feasible region defined by
lower half space constraints

Feasible region defined by
upper half space constraints

Feasible region defined by
upper half space constraints

Feasible region defined by
both upper and lower half

space constraints

Iteration: 1 Iteration: 2 Iteration: 3

Fig. 6. Intuition on why computing the lower hull and upper hull iteratively enables the identification of

infeasible constraints. Each line represents a constraint. The bordered lines represent constraints on the

convex hull of the dual points. A�er we iteratively remove the constraints on the convex hull, we end up with

a feasible LDLP.

have successfully partitioned A into a feasible LDLP X1 and a superset of infeasible constraintsV1.
Otherwise, we compute the lower hull and upper hull of X1 and check if removing them from X1

makes it feasible. We repeat this procedure iteratively until we end up with a feasible LDLP. The
union of all the lower hull and upper hull constraints identi�ed in the intermediate steps constitutes
the superset of the infeasible constraints. Given that the set A is �nite, the process terminates
either when we identify a feasible LDLP or when the size of the superset of infeasible constraints
identi�ed exceeds some threshold (e.g., 20,000). Figure 6 pictorially shows how removing the lower
and upper hull constraints identi�es the infeasible constraints and eventually results in a feasible
LDLP.
Approximation using the convex hull IR. Computing the convex hull with = constraints

and in : dimensions has time complexity $ (=:), which makes the problem intractable when we
have billions of constraints in the RLibm context. We observe that RLibm constraints have a special
structure; they are intrinsically 2-dimensional because a given constraint depends on a single input
G8 (which is positive) and the bounds ;8 or ℎ8 (i.e., 20 + 21G8 + 22G

2
8 + .. + 2:G

:
8 ≤ ℎ8). Hence, we

propose to project points from :-dimensions to 2-dimensions and compute the convex hull in
2-dimensions. We subsequently identify the feasible LDLP using the computed 2-dimensional hulls
with an iterative process that we described above. We empirically show that computing the convex
hull in 2-dimensions in a single iteration is su�cient to identify a superset of infeasible constraints
in the RLibm context. Our use of the convex hull as the IR and approximation over it by projecting
to 2-dimensions, makes our method extremely fast in practice with time complexity $ (:= log �),
where � is the number of vertices on the convex hull.

3.2 Maximum Consensus using the Basis of the Feasible LDLP

After computing the feasible LDLP X1 and a superset of the infeasible constraints V1 using the
convex hull, we now want to identify the maximum number of constraints in V1 that can be
satis�ed while also satisfying all the constraints in X1. Our high level strategy is to create a new
linear program with slack variables that satis�es all the constraints inX1 and the maximum number
of constraints in V1 inspired by prior maximum consensus formulations [34]. However, we cannot
directly use the maximum consensus formulation because we have more than a billion constraints.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 197. Publication date: June 2024.

197:10 Mridul Aanjaneya and Santosh Nagaraka�e

Using the maximum consensus formulation for all the billion constraints will violate the “small
dimension” property (small number of variables and a large number of constraints). General linear
programs with billions of constraints cannot be solved by any modern LP solver.
To address this issue, we leverage the insight that any feasible LDLP has a small set of “key”

basis constraints and any solution (with real values) that satis�es these key constraints will satisfy
all other constraints in the LDLP [19]. We use the feasible LDLP solver from the RLibm project to
identify (an overapproximation of) the basis constraints B-1

, which has 6:2 constraints where : is
the number of unknowns in the LDLP (i.e., dimension of the LDLP).
Next, we generate a new LP formulation that uses slack variables for the constraints in V1 and

the original constraints for the basis constraints of B-1
. The use of slack variables makes the new

LP feasible. Because the number of variables in the new LP increases the number of unknowns,
the new linear program is not a low-dimensional linear program. Given that the superset of the
infeasible constraints computed using the convex hull has already reducedV1 to a few thousand
constraints and we use the basis of X1 that just has 6:2 constraints, the new feasible LP in total has
a few thousand constraints, which can be easily solved by modern LP solvers. Section 5 provides
detailed explanation to create the maximum consensus solution using B-1

andV1.
When we solve the above new linear program using any existing LP solver (e.g., SOPLEX), it

produces solutions with real values. Our goal is to produce �oating point maximum consensus
solutions. When we round the real-valued solution to �oating point values, it may violate some of
the constraints in B-1

or V1. In those cases, we attempt to solve the system by strengthening the
constraint to account for rounding errors (i.e., decreasing the upper bound or increasing the lower
bound). It forces the LP solver to �nd a solution for a much stricter constraint. When we are able
to �nd a solution, we have identi�ed a nearly maximum consensus solution. The middle part of
Figure 5 illustrates these steps.

3.3 Combining Clarkson’s Method with the Maximum Consensus Approach

The solution obtained from the above step is the nearly-maximum consensus solution (not the
maximum consensus solution) due to FP rounding errors. The challenging issue in generating FP
solutions arise when the solution from the above step satis�es B-1

and the maximum number
of constraints in V1 but violates another constraint in X1. To identify the maximum consensus
solution, we split the entire set of constraints into two sets: X consists of constraints that are
satis�ed by the nearly maximum consensus solution and V consists of constraints violated by the
nearly maximum consensus solution.

We iteratively combine Clarkson’s method for feasible LDLPs in the RLibm project [2] (i.e., for X)
and the maximum consensus formulation for violated constraints (i.e.,V). The goal is to identify
an FP solution that satis�es all the constraints in X and the maximum number of constraints in V .
We could have directly used this iterative method combining Clarkson’s method and the maximum
consensus formulation on the feasible setX1 and the violated setV1 identi�ed using the convex hull.
However, each iteration of the Clarkson’s method would have been signi�cantly slower because
there are thousands of violated constraints in V1. The nearly maximum consensus solution ideally
reduces the cardinality of violated constraints from thousands to a handful.
We assign weights to each constraint in X. We sample 6:2 constraints from X and use all the

constraints fromV with the maximum consensus formulation and ask an o�-the-shelf LP solver
for a solution. The use of slack variables for the constraints in V enables us to create a feasible
linear program for the sample. We validate if the sample solution satis�es all the constraints in X.
If they are violated by the sample solution, then the weights of those constraints in X are doubled.
When all the constraints in X are satis�ed, we have an FP solution that satis�es the maximum
number of constraints. The rightmost part of Figure 5 shows the iterative loop.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 197. Publication date: June 2024.

Maximum Consensus FP Solutions for Infeasible LDLPs with Convex Hull as the IR 197:11

4 FINDING THE SUPERSET OF INFEASIBLE CONSTRAINTS WITH THE CONVEX HULL

We make a case for using the convex hull as the intermediate representation to generate maximum
consensus solutions for infeasible low-dimensional linear programs. We achieve this by using
geometric duality transformations to represent a constraint as a point in the dual space [30].
Looking at the convex hull of the points in the dual space can help in the identi�cation of feasible
regions in the case of feasible LDLPs [51]. As explained in Section 2, we observe that by visualizing

constraints as halfspaces, the lower envelope of all upper halfspaces (resp. upper envelope of all lower

halfspaces) includes all constraints that make the LDLP infeasible. The upper and lower envelopes can

be e�ciently computed by using geometric duality and computing the lower and upper hull of the

dual points. Hence, the convex hull serves as a good intermediate representation for computing
maximum consensus solutions for infeasible linear programs.

Linear constraints to points in the dual space. The �rst step in our approach is to represent
each constraint as a point in the dual space. Given a linear constraint from the RLibm project of
the form ;8 ≤ 21 + 22G

1
8 + 23G

2
8 + 24G

3
8 ≤ ℎ8 , we �rst canonicalize it as two constraints: 21 + 22G

1
8 +

23G
2
8 + 24G

3
8 − ℎ8 ≤ 0 and −21 − 22G

1
8 − 23G

2
8 − 24G

3
8 + ;8 ≤ 0. The points in the dual space for these

constraints are (1, G18 , G
2
8 , G

3
8 , ℎ8) and (−1,−G18 ,−G

2
8 ,−G

3
8 ,−;8), respectively. Since the �rst coordinate

is the same for all the dual points (1 for dual points of constraints that specify the upper bound and
−1 for dual points of constraints that specify the lower bound), we can ignore the �rst coordinate,
making the mapping from R: to R: .
Next we want to compute the lower hull of the dual points corresponding to constraints that

specify the upper bound (i.e., (1, G18 , G
2
8 , G

3
8 , ℎ8), which is now represented as (G8 , G28 , G

3
8 , ℎ8)). Similarly,

we want to compute the upper hull of the dual points corresponding to constraints that specify the
lower bound (i.e., (−1,−G18 ,−G

2
8 ,−G

3
8 ,−;8), which is now represented as (−G8 ,−G28 ,−G

3
8 ,−;8)).

Special structure of the RLibm constraints and computing the convex hull with 2-D

projections. Computing the convex hull in :-dimensions has complexity $ (=:), which becomes
intractable when = is in order of billions. To address this issue, we leverage the special structure
of the RLibm constraints and compute the convex hull in 2-dimensions. We project the point set
P that is embedded in a high-dimensional Euclidean space R: to a lower-dimensional Euclidean
space R2. The RLibm constraints are of the form, for example, (G , G2, G3, ..., G3 , ;) or (G , G2, G3, ..., G3 ,
ℎ) where ; and ℎ are real numbers. These points are intrinsically 2-dimensional because the points
(G , G2, G3, ..., G3) are parameterized by a single parameter G and represent a 1-dimensional curve in
high dimensions.
As we show next in Theorem 1, the points (G , G2, G3, ..., G3) also lie on a convex manifold.

Moreover, they are monotonically increasing. Hence, if we ignore the last coordinate (; , ℎ), then all
the constraints are satis�able. Intuitively, ; and ℎ represent the freedom provided by the RLibm
approach for computing the correctly rounded result. If this freedom is large, then it makes it
easier for a single polynomial approximation to exist. Thus, it is only because of the last coordinate
; (or ℎ) that some constraints become infeasible. Our approach of computing the 2-dimensional
hull is based on the intrinsic 2-dimensionality of the point set described above. Technically, the
constraint with the highest ; coordinate in any direction should be below the constraint with the
lowest ℎ coordinate in that direction for the LDLP to become feasible. This observation is our main
motivation for using the 2-D convex hull for �nding infeasible constraints (i.e., with the extreme ;
and ℎ coordinates).
We now explain the details behind this projection by �rst proving the following theorem:

Theorem 1. All points of the form (GA , GB), where 1 ≤ A < B , lie on a convex curve.

Proof. The points (GA , GB) lie on the graph of the function ~ = GB/A . The curvature of this
function can be computed as:

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 197. Publication date: June 2024.

197:12 Mridul Aanjaneya and Santosh Nagaraka�e

32

3G2
GB/A =

B

A

(B

A
− 1

)

GB/A−2 =
B

A

(B

A
− 1

) GB/A

G2
(3)

In the context of the RLibm project, G is the reduced input, which is always positive [38, 39].
Furthermore, since B > A ≥ 1, it follows that the curvature is always positive. The positivity of the
curvature implies that the function ~ = GB/A is convex. □

The convex hull of a point set P is the smallest convex set containing P. However, if P was
sampled from a convex curve, then by de�nition, all points in P lie on the convex hull. An argument
similar to that made in Theorem 1 can also be made for all triplets, quadruplets, etc., of powers
of G , implying that they lie on a convex manifold. However, we skip this proof for simplicity of
exposition as it follows directly from the structure of cyclic polytopes [1].

The above argument leads us to individually consider the pairs (G8 , ℎ8), (G28 , ℎ8), . . . , (G
3
8 , ℎ8) when

computing the convex hull for the dual points corresponding to constraints that specify the upper
bound. In a similar fashion, we only consider the pairs (−G8 , ;8), (−G

2
8 ,−;8), . . . , (−G

3
8 ,−;8) when

computing the convex hull for the dual points corresponding to constraints that specify the lower
bound. Intuitively, this means that it is the lower and upper bounds ;8 and ℎ8 that ultimately decide
whether the linear program is feasible or infeasible. Indeed, as the gap between ;8 and ℎ8 increases
for all inputs, so does the likelihood of a possible solution for the linear program.

We provide a proof for the general case (i.e., without the special structure of the RLibm constraints)
that points identi�ed using the convex hull of the 2-D projection maps to the convex hull of the
dual points (G8 , G28 , . . . , G

3
8 , ℎ8) or (G8 , G

2
8 , . . . , G

3
8 , ;8) in :-dimensions. For this purpose, we recall that

a point ? lies on the convex hull, if and only if there exists a hyperplane � that passes through ?

and all the other points lie only on one side of � , i.e., in one halfspace de�ned by � [11].

Theorem 2. Consider a point set P in :-dimensions and let Q be a 2-D point set that is computed

by projecting all points in P to a 2-D space by choosing two of the : coordinates. Then, any point on

the convex hull of Q maps to a point on the convex hull of P.

Proof. Without loss of generality, assume that the point set Q was computed by projecting all
the :-dimensional points in P along the �rst two coordinates. Let ? ≡ (G0, G1) be a point on the
convex hull of& . By de�nition of the convex hull, there is a hyperplane� that passes through ? and
all other points in Q lie only on one side of� . Let = ≡ (=0, =1) be the normal vector for� . The above
de�nition implies that =0 · G0 + =1 · G1 ≤ =0 · ~0 + =1 · ~1 for all other points @ ≡ (~0, ~1) in Q. If we
consider the normal vector = ≡ (=0, =1, 0, . . . , 0) in :-dimensions, then it passes through the point
? ′ ≡ (G0, G1, G2, . . . , G:−1) whichwas projected to ? . Moreover, for all points@′ ≡ (~0, ~1, ~2, . . . , ~:−1)

in P, we still have the inequality G0 ·=0+G1 ·=1+G2 ·0+ . . .+G:−1 ·0 ≤ ~0 ·=0+~1 ·=1+~2 ·0+ . . .+~:−1 ·0

from the de�nition of the 2-D convex hull, i.e., the point ? ′ lies on the convex hull of P. □

In summary, without the structure of the RLibm constraints, points identi�ed via the 2-D hull lie
on the :-D hull, but not vice versa. The speci�c structure of the RLibm constraints (i.e., they are
inherently 2-dimensional) enables us to identify the infeasible constraints using the 2-D hull.

Identifying a superset of infeasible constraints by computing the convex hull with 2-D

projections. To identify the superset of infeasible constraints, our approach is to use an iterative
procedure, which we described in Section 3.1. We compute the convex hull with the 2-D projection
and check if the remaining constraints after removing the constraints on the 2-D hull are feasible
using the RLibm’s feasible LDLP solver. This process repeats until we end up with a feasible LDLP
or the total number of constraints accumulated by computing the 2-D hull iteratively exceeds the
user-de�ned threshold. Crucially, our approach always reports a superset of infeasible constraints

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 197. Publication date: June 2024.

Maximum Consensus FP Solutions for Infeasible LDLPs with Convex Hull as the IR 197:13

by construction because we have a de�nitive way to check whether a system is a feasible LDLP
using RLibm’s solver. We empirically show in Section 7 that the convex hull computed with the 2-D
projection computes a superset of infeasible constraints in a single iteration in the RLibm context.
Computing the convex hull in 2-dimensions with our projections can be done in $ (:= log �)

time using the Kirkpatrick-Seidel algorithm [33] where � is the number of vertices on the convex
hull. This computation is performed with high precision arithmetic using the CGAL library [56].
With this approach, we are able to split the set of constraints A into a feasible set of constraints X1

and a superset of infeasible constraints V1.

5 COMPUTING NEARLY MAXIMUM CONSENSUS SOLUTIONS

Using the convex hull of the constraints in the dual space, we have partitioned the entire set of
constraints (i.e.,A) into a set of feasible constraints (i.e., X1) and a superset of infeasible constraints
(i.e.,V1). The setV1 can have a few thousand constraints. Now, the goal is to identify a solution
that satis�es all the constraints in the �rst set and the maximum number of constraints in the
second set.
Identifying the basis of the feasible LDLP X1. Given that the feasible set is an LDLP, there

exists a small set of basis constraints (i.e., B-1
in Figure 5) whose solution satis�es all constraints

in the feasible LDLP X1 [19]. For the feasible set of constraints, we can use the solver from the
RLibm project for feasible low-dimensional linear programs [2] to identify the basis constraints.
Inspired by maximum consensus formulations from the computer vision community [34], we
design a new linear program whose solution in real values satis�es all the constraints in B-1

and
the maximum number of constraints in the setV1. We describe our adaptation of the maximum
consensus formulation in Section 5.1. The new linear program for determining maximum consensus
introduces two new variables for each original constraint. Hence, it cannot be applied to all the
constraints in A as modern LP solvers cannot solve regular LP problems (i.e., number of variables
are proportional to the number of constraints) with more than a few thousand constraints.
Transitioning from real valued solutions to FP solutions. The solution that we obtain by

solving the basis constraints and the new LP formulation for the constraints in V1 is with real
values. When we round the real valued solution to a �oating point representation, it may fail to
satisfy some constraints in B-1

. In such cases, we reduce the bound (i.e., 18) of the constraint by 1
ULP (units in the last place) in double precision (i.e., the representation used for the implementation
of the math library) for constraints of the form (0)8 \ −18 ≤ 0). This is analogous to shrinking of the
intervals in the RLibm project. By doing so, we ask the solver to solve a much stricter constraint.
We repeat this process until we are able to solve the set B-1

∪V1. This process terminates because
B-1

is a feasible LDLP. When the solution with �oating point values satis�es all constraints in B-1
,

we have a nearly maximum consensus solution.
The solution may still not be the maximum consensus solution for the entire set of constraints

A because the rounding error introduced by rounding the real value to a FP solution may violate a
few constraints in A. The important point to note is that the number of violated constraints will
signi�cantly shrink from a few thousands to a handful by identifying the nearlymaximum consensus
solution. Subsequently, we employ an iterative algorithm that combines maximum consensus with
Clarkson’s method [20] to �nd the maximum consensus solution, which we describe in Section 6.

5.1 A New Linear Program for Maximum Consensus Among V1 and B-1

Given the set of basis constraints B-1
and an overapproximation of violated constraintsV1, the set

B-1
∪V1 is an infeasible LDLP. We want to identify a solution that satis�es the maximum number

of constraints in V1 while satisfying all constraints in B-1
. Mathematically,

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 197. Publication date: June 2024.

197:14 Mridul Aanjaneya and Santosh Nagaraka�e

max
) ∈R=,I⊆V1

|I |

subject to a
Z
i) − 18 ≤ 0 ∀8 ∈ I ∪ B-1

(4)

This formulation, as stated above by itself, is not a linear program. The objective function is
counting over discrete sets. Our goal in this section is to create an LP formulation.
Slack variables to move to a feasible LP and indicator variables to count the number

of violated constraints. We want to create a new feasible LP from an infeasible LP. There are
four key ideas in creating this formulation. First, we add slack variables to each constraint. Each
original constraint aZi) − 18 ≤ 0 now becomes aZi) − 18 ≤ B8 , where B8 ≥ 0 is a slack variable. The
slack variable provides a bit more freedom to satisfy the constraint. We want the slack variable
to be non-zero only when the constraint is violated, which we accomplish by adding additional
constraints that we describe next. When the 8Cℎ constraint is violated in the original LP, we have
a
Z
i) − 18 > 0. With the slack variables, we have aZi) − 18 ≤ B8 . Hence, B8 will be non-zero when the

constraint is violated.
Second, we add indicator variables D8 for each constraint to indicate whether the constraint is

violated or not. With the use of indicator variables, �nding a solution that satis�es the maximum
number of constraints boils down to minimizing the sum of the indicator variables (see equation (5)).
Third, we want the indicator variable to be 1 when the constraint is violated. Since the slack

variable is non-zero when the constraint is violated, we force the indicator variable D8 to be 1 with
the constraint B8 (1 − D8) = 0.

Finally, we want to force the indicator variable D8 to be 0 and the slack variable B8 to be 0 when
the 8Cℎ constraint is satis�ed. We accomplish this with the constraint D8 (B8 − a

Z
i) + 18) = 0. When

the original LP constraint is satis�ed, aZi) − 18 ≤ 0. Hence, −aZi) + 18 ≥ 0. Given that B8 ≥ 0, we
have B8 − a

Z
i) + 18 ≥ 0, which forces D8 to be zero. The constraint B8 (1 − D8) = 0 forces B8 to be zero

when D8 is 0. The constraint D8 (B8 − a
Z
i) +18) = 0 forces B8 − a

Z
i) +18 = 0 when the 8Cℎ constraint is

violated because D8 is 1 in that case. Further, it also ensures that the slack variable B8 captures the
amount by which the constraint aZi) + 18 ≤ 0 is o� in the original LP.

Summarizing these ideas, the formulation to identify the maximum set of constraints inV1 while
satisfying all constraints in B-1

is as follows:

min
u,s∈R" ,) ∈R=

∑

D8 (5)

subject to a
Z
i) − 18 ≤ B8 ∀8 ∈ +1 (6)

a
Z
j) − 1 9 ≤ 0 ∀9 ∈ �-1

(7)

D8 (B8 − a
Z
i) + 18) = 0, (8)

B8 (1 − D8) = 0, (9)

1 − D8 ≥ 0, (10)

B8 , D8 ≥ 0. (11)

Note that all constraints from the basis of X1 (i.e., B-1
) are used unmodi�ed from the original LP

(see equation (7)). Slack and indicator variables are only introduced for the constraints in V1.
Removing non-linearity with iterative predictor and corrector steps. Equations (5)-(11)

are still non-linear due to the constraints in equations (8) and (9). We use the idea from prior
work [34] of removing this non-linearity by moving the non-linear constraints in equations (8)

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 197. Publication date: June 2024.

Maximum Consensus FP Solutions for Infeasible LDLPs with Convex Hull as the IR 197:15

and (9) into the objective function. These new constraints are controlled by the penalty parameter
U , which forces as many constraints to be satis�ed as possible.

min
u,s∈R" ,) ∈R=

∑

8 D8 + U
[

D8 (B8 − a
Z
i) + 18) + B8 (1 − D8)

]

subject to a
Z
i) + 18 ≤ B8 , ∀8 ∈ +1

a
Z
j) − 1 9 ≤ 0, ∀9 ∈ �-1

1 − D8 ≥ 0,

B8 , D8 ≥ 0. (12)

The above system has a non-linear objective function. The idea is to solve it in an iterative
fashion with a predictor-corrector loop. In the predictor step, we �x the values of D8 , which makes
them constant and the system linear. The resulting LP can be solved by an LP solver to obtain
the values of si and) . Subsequently in the corrector step, we use the values for si and) from the
predictor step and make them constant and create a linear program and solve them for D ′

8B .
The linear program being solved by the predictor step after �xing the variables D8 with constants

is shown in equation (13), which has been simpli�ed with constant propagation for the u variables
and some algebraic simpli�cation.

min
s∈R" ,) ∈R=

∑

8

B8 − D8 (a
Z
i) − 18)

subject to a
Z
i) − 18 ≤ B8 , ∀8 ∈ +1

a
Z
j) − 1 9 ≤ 0, ∀9 ∈ �-1

B8 ≥ 0. (13)

After obtaining the solution to equation (13), the corrector step �xes the variables s and) and
solves for the following set of constraints in equation (14) to determine the D8 ’s.

min
u∈R"

∑

8

D8
[

1 − U (aZi) − 18)
]

(14)

subject to 0 ≤ D8 ≤ 1.

Interestingly, this equation can be solved in closed form in away that also ensures that u ∈ {0, 1}" .
Speci�cally, if

[

1 − U (aZi) − 18)
]

≤ 0, set D8 = 1, else set D8 = 0. In the subsequent iterations, the
predictor uses these values of u. The U parameter, when set to a large value, will force the D8 ’s to
be 1, unless the constraint is satis�ed. The predictor will try to satisfy as many violated constraints
as possible in the next iteration. We alternate between the predictor and the corrector steps until
the objective function of the predictor step in equation (13) does not change across iterations.

5.2 Illustration of Maximum Consensus with B-1
and V1

We illustrate our above formulation to �nd the nearly maximum consensus solution with a small
infeasible LP with three basis and two violated RLibm constraints. Assume that the polynomial
? (G) that we are generating from the RLibm project has the form ? (G) = 20 + 21G + 22G

2. Let us say
the basis constraints (i.e., B-1

) corresponding to the inputs G1, G2, and G3 are:

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 197. Publication date: June 2024.

197:16 Mridul Aanjaneya and Santosh Nagaraka�e

;1 ≤ 20 + 21G1 + 22G
2
1 ≤ ℎ1

;2 ≤ 20 + 21G2 + 22G
2
2 ≤ ℎ2

;3 ≤ 20 + 21G3 + 22G
2
3 ≤ ℎ3 (15)

Let’s say the violated constraints, V1, corresponding to inputs G4 and G5 are:

;4 ≤ 20 + 21G4 + 22G
2
4 ≤ ℎ4

;5 ≤ 20 + 21G5 + 22G
2
5 ≤ ℎ5 (16)

After canonicalization, each original basis constraint from equation (15) becomes,

20 + 21G1 + 22G
2
1 − ℎ1 ≤ 0, −20 − 21G1 − 22G

2
1 + ;1 ≤ 0

20 + 21G2 + 22G
2
2 − ℎ2 ≤ 0, −20 − 21G2 − 22G

2
2 + ;2 ≤ 0

20 + 21G3 + 22G
2
3 − ℎ3 ≤ 0, −20 − 21G3 − 22G

2
3 + ;3 ≤ 0 (17)

Similarly, the violated constraints from equation (16) after canonicalization become,

20 + 21G4 + 22G
2
4 − ℎ4 ≤ 0, −20 − 21G4 − 22G

2
4 + ;4 ≤ 0 (18)

20 + 21G5 + 22G
2
5 − ℎ5 ≤ 0, −20 − 21G5 − 22G

2
5 + ;5 ≤ 0 (19)

Our goal is to �nd a nearly maximum consensus solution that satis�es all the basis constraints
and the maximum number of the violated constraints. Obviously, in this particular scenario, it is
possible to exhaustively test whether the solution is maximal by inserting each of the violated
constraints one by one and checking if the linear program is feasible. However, in practical scenarios,
this is not a feasible approach when there are several billions of constraints.
We introduce slack and indicator variables for each of the constraints in the set of violated

constraints. We use B4; and B4ℎ to represent slack variables for the violated constraint in equation (18).
Similarly, B5; and B5ℎ represent slack variables used for the violated constraint in equation (19).
Similarly,D4; ,D4ℎ ,D5; , andD5ℎ represent indicator variables corresponding to the violated constraints
in equations (18) and (19), respectively.

Initially, we can set indicator variables (i.e., D8 ’s) to either 0 or 1 for the predictor step when we
try to �nd the B8 ’s and \ . The following linear equation from the predictor step (i.e., equation (13))
attempts to �nd and satisfy the maximum number of violated constraints while satisfying all the
basis constraints:

<8= B4; − D4; (−20 − 21G4 − 22G
2
4 − ;4) + B4ℎ − D4ℎ (20 + 21G4 + 22G

2
4 − ℎ4)

+B5; − D5; (−20 − 21G5 − 22G
2
5 − ;5) + B5ℎ − D5ℎ (20 + 21G5 + 22G

2
5 − ℎ5)

subject to − 20 − 21G4 − 22G
2
4 + ;4 ≤ B4; , 20 + 21G4 + 22G

2
4 − ℎ4 ≤ B4ℎ

−20 − 21G5 − 22G
2
5 + ;5 ≤ B5; , 20 + 21G5 + 22G

2
5 − ℎ5 ≤ B5ℎ

20 + 21G1 + 22G
2
1 − ℎ1 ≤ 0, −20 − 21G1 − 22G

2
1 + ;1 ≤ 0

20 + 21G2 + 22G
2
2 − ℎ2 ≤ 0, −20 − 21G2 − 22G

2
2 + ;2 ≤ 0

20 + 21G3 + 22G
2
3 − ℎ3 ≤ 0, −20 − 21G3 − 22G

2
3 + ;3 ≤ 0

B4; ≥ 0, B4ℎ ≥ 0, B5; ≥ 0, B5ℎ ≥ 0 (20)

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 197. Publication date: June 2024.

Maximum Consensus FP Solutions for Infeasible LDLPs with Convex Hull as the IR 197:17

Note that basis constraints are used without any slack or indicator variables in equation (20). The
introduction of the slack variables B4; , B4ℎ, B5; , B5ℎ ensures that the constraints [;4, ℎ4] and [;5, ℎ5]

may not be exactly satis�ed by the computed solution at either the lower or the upper bound, while
ensuring that the linear program de�ned in equation (20) still computes a non-trivial solution, i.e.,
some of the slack variables may be non-zero. This is in stark contrast to prior solvers for feasible
LPs [2], which will simply fail to �nd a solution if all the constraints cannot be exactly satis�ed.

The corrector stage uses the solution from the LP problem above and computes D4; , D4ℎ , D5; , and
D5ℎ using equation (14). We set U to a large pre-determined value to provide higher penalty to
violated constraints. The process is now repeated with the corrected D values until the objective
function in equation (13) does not change or the user-speci�ed number of constraints are satis�ed.

6 ITERATIVELY FINDING THE MAXIMUM CONSENSUS FP SOLUTION

The new linear program for maximum consensus with the basis and an overapproximation of
the violated constraints is solved with real values and the solution is rounded to �oating point
values. The �oating point solution satis�es all the basis constraints and the maximum number of
violated constraints. However, due to rounding errors, the �oating point solution may violate some
constraints in X1, the feasible LP. There is also some bias introduced by the �xed basis BX1

because
the basis computation was decoupled from the set of violated constraintsV1. Hence, the solution
from the formulation presented in Section 5 is a solution that is close to the maximum consensus
solution but not the maximum consensus solution itself. Using the above solution, we partition
the entire set of constraints into two sets: a set of constraints X that is satis�ed by the nearly
maximum consensus solution and a set of violated constraints V . The set of violated constraints
V is signi�cantly smaller than the overapproximation of the violated constraints that we started
with (i.e., V1). Next, we propose an iterative combination of the maximum consensus formulation
with Clarkson’s algorithm [20] for feasible LDLPs. Clarkson’s method tries to remove the bias
introduced by any �xed basis by iterating over many di�erent bases for X, in an e�ort to �nd the
basis that is best suited for satisfying the maximum number of constraints in V . Each iteration
with the sets X andV is signi�cantly faster in comparison to running our iterative algorithm with
X1 andV1, which were generated by our approximation using the convex hull.

Here are the steps of our iterative algorithm, which uses Clarkson’s method for feasible LDLPs
from the RLibm project and combines it with the maximum consensus formulation that we described
in Section 5.1. Given the feasible LDLP X and a small set of violated constraints V , our goal is to
generate a solution with �oating point values that satis�es the maximum number of constraints in
V while satisfying all the constraints in X.

• Step 1: We maintain weights with each constraint from X. We initialize the weights to 1.
• Step 2: Now we sample 6:2 constraints from X using weighted random sampling, where : is
the number of unknowns. We use the original LP for the sampled constraints. We generate the
maximum consensus LP formulation for the constraints in V . We ask the LP solver to solve
the sampled constraints from X along with the maximum consensus constraints of the form
in equation (13) for those in V . This modi�ed linear program only has : + 2|V| variables,
which is much smaller than the total number of constraints |A|, thereby maintaining a
low-dimensional structure.

• Step 3: We check how many constraints of X are not satis�ed by the sample solution. If the
sum of the weights of the constraints in X that are violated by the sample solution is more
than 1/(3: − 1) fraction of the combined sum of the weights of constraints in X satis�ed by
the sample solution, then we discard this sample and go to Step 2. Otherwise, we double the
weights of the constraints violated by the sample solution in X and go back to Step 2.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 197. Publication date: June 2024.

197:18 Mridul Aanjaneya and Santosh Nagaraka�e

• Step 4: The algorithm terminates when the sample solution satis�es all constraints in X and
the number of violated constraints does not change for a �xed number of iterations.

7 EXPERIMENTAL EVALUATION

We describe our prototype [4] for solving infeasible LDLPs, our experimental methodology for
evaluating its ability to solve linear programs, and the performance of the resulting math libraries
with the maximum consensus solution from our solver.

Prototype and methodology. Our solver for infeasible LDLPs takes linear programs as input
and produces �oating point solutions in double precision for all the unknown variables. It is written
in C++ and handles linear programs with several billion constraints. The prototype uses the SOPLEX
solver, which uses exact rational arithmetic to solve small linear programs internally. To evaluate
our infeasible LDLP solver, we use linear programs generated from the RLibm project for generating
correctly rounded elementary functions. A single polynomial approximation for an elementary
function from the RLibm project produces correctly rounded results for all rounding modes and
multiple representations (up to 32-bits). When we create a feasible subset of the original infeasible
LDLP, we use the solver for feasible linear programs from the RLibm project [2], which implements
Clarkson’s method [20] to produce �oating point solutions. We use the computational geometry
package, CGAL [56], to compute the convex hull using our 2-D projections.
We experimented with the following LP solvers to solve the linear programs generated in the

RLibm project: Gurobi, CPLEX, and SOPLEX. All these solvers failed to solve any of the the LPs
from the RLibm project. For the experimental evaluation, we compare our solver with RLibm’s
solver for feasible linear programs [2] and our implementation of the maximum consensus solution
from the computer vision community [34]. When given an infeasible linear program, RLibm’s solver
does not terminate. We modi�ed it to print out the number of constraints satis�ed and violated by
the best solution after every iteration. We ran the RLibm’s solver for 500 iterations and use the best
solution produced for our evaluation. We also implemented the maximum consensus solution for
small programs from the vision community for the entire LDLP [34] because there are no publicly
available versions. We use the wall clock time to measure the time taken to produce a solution.

We incorporated the resulting �oating point solutions generated by our solver for each elementary
function into RLibm’s math libraries. We validated that the resulting functions produce correctly
rounded results for all representations and for all inputs. During this process, we also improved the
implementation of range reduction and output compensation code in the RLibm project. We evaluate
the performance bene�ts from these changes along with those from the maximum consensus
solutions. We have committed the resulting functions to the RLibm git repository.

Checking the validity of the resulting functions can be completed within a minute. Subsequently,
we measure the performance of the resulting functions. We conducted our experiments on a
2.10GHz Intel Xeon(R) Silver 4310 server with 256GB of RAM running Ubuntu 22.04.3 LTS that
has both Intel turbo boost and hyper-threading disabled to minimize perturbation. We compiled
our resulting math libraries with -march=native -O3 �ags. For measuring performance, we use
hardware performance counters using the perf tool to count the number of cycles taken to compute
the result for each input. We aggregate these counts for all inputs to compute the total time taken
for each elementary function.

Ability to solve infeasible linear programs and produce maximum consensus solutions.

Table 1 compares the ability of the three solvers: our solver, the solver from the RLibm project,
and the MCS solver from the computer vision community to solve linear programs for generating
correctly rounded implementations for 16 functions. The maximum consensus solver from the
vision community [34] failed to produce a solution for any of the functions. The SOPLEX solver
used to solve the MCS LP formulation times out without producing a solution. This is because

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 197. Publication date: June 2024.

Maximum Consensus FP Solutions for Infeasible LDLPs with Convex Hull as the IR 197:19

Table 1. This table reports whether the solvers produce the maximum consensus solution (i.e., ✓) or not

(i.e., ✗). We report the type of LP and the number of RLibm constraints (i.e., ;8 ≤ % (G8) ≤ ℎ8) for a particular

function. We compare our solver to the RLibm project’s solver [2] and our implementation of the maximum

consensus solver from the computer vision community [34]. We report the speedup in generating a solution

with our solver in comparison to RLibm’s solver when it generates an acceptable solution with less than 30

violated constraints.

function LP type Total RLibm Our RLibm MCS Speedup over
constraints solver solver [2] solver [34] RLibm solver

logf Infeasible 7,165,657 ✓ ✗ ✗ 73.2 ×

log10f Infeasible 7,165,657 ✓ ✗ ✗ 66.7 ×

log2f Feasible 7,165,657 ✓ ✓ ✗ 0.9 ×

expf Infeasible 503,402,009 ✓ ✗ ✗ 144.5 ×

exp10f Infeasible 504,492,234 ✓ ✗ ✗ 98.3 ×

exp2f Infeasible 286,174,228 ✓ ✗ ✗ 31.6 ×

sinpif Feasible 126,086,339 ✓ ✓ ✗ 1.1 ×

cospif Feasible 48,373,323 ✓ ✓ ✗ 1.1 ×

sinhf Infeasible 256,614,352 ✓ ✗ ✗ 2.5 ×

coshf Feasible 255,080,290 ✓ ✓ ✗ 1.2 ×

sinf Infeasible 1,122,326,490 ✓ ✗ ✗ 74.2 ×

cosf Infeasible 1,045,258,544 ✓ ✗ ✗ 113 ×

tanf Infeasible 1,324,683,332 ✓ ✗ ✗ 174 ×

that formulation destroys the low-dimensional nature of the LP problem and no solver can solve
LPs with billions of unknowns. In contrast, our solver is able to generate the best known maximum

consensus solution for both infeasible and feasible LDLPs corresponding to these functions.
For feasible LDLPs, there exists a solution that satis�es all the constraints. RLibm’s solver can solve

such feasible LDLPs in similar time as our solver (i.e., for log2f, cospif, sinpif, and coshf). In
the case of an infeasible LDLP, there does not exist a single solution that satis�es all the constraints.
Our goal is to identify a solution that satis�es the maximum number of constraints (i.e., only a
few violated constraints). RLibm’s solver cannot generate the solution produced by our solver
within the speci�ed number of iterations. In contrast, our solver is able generate a better solution
in signi�cantly faster time (174× faster for tanf). Overall, our solver is able to generate a better
solution than RLibm’s solver in at least 10× shorter time for infeasible LDLPs.

Analysis of the solutions from the various stages of our solver. For each function, Table 2
reports the number of canonicalized constraints, which is 2× the number of RLibm constraints.
The number of constraints for each function is a function of range reduction. For trigonometric
functions, one needs to use 1

c
with a large number of bits to produce correctly rounded results [43],

which causes each original input to result in a unique reduced input (and a constraint) after range
reduction. Hence, trigonometric functions have more than 2 billion canonicalized constraints.

The third, fourth, and �fth columns of Table 2 report the number of extreme points on the convex
hull that approximates the number of infeasible constraints (i.e., |V1 | from Figure 5), the number of
constraints violated by the solution generated by using the basis and the new LP for the nearly
maximum consensus FP solution (i.e., |V| from Figure 5), and the number of constraints violated
by the solution with the iterative loop for maximum consensus, respectively. The use of convex
hull to over-approximate the infeasible constraints reduces the number of constraints from billions
to a few thousands (i.e., 11,773 in the worst case with exp10f), which allows us to solve the new LP
for maximum consensus with SOPLEX.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 197. Publication date: June 2024.

197:20 Mridul Aanjaneya and Santosh Nagaraka�e

Table 2. This table reports the total number of canonical constraints, the number of extreme points on the

convex hull, violated constraints in the nearly maximum consensus solution and our final maximum consensus

solution, the number of violated constraints in the RLibm solution, and the time taken to solve the infeasible

LDLP with our approach.

function Total Convex hull Nearly-MCS Final MCS Best RLibm Total
canonical extreme violated violated violated time
constraints points constraints constraints constraints (seconds)

logf 14,331,314 6,166 13 10 24 216
log10f 14,331,314 6,162 39 8 21 140
log2f 14,331,314 6,726 0 0 0 121
expf 1,006,804,018 11,714 14 1 23 2047
exp10f 1,008,984,468 11,773 4 3 11 1929
exp2f 572,348,456 14,348 1 1 3 636
sinpif 252,172,678 4,827 0 0 0 275
cospif 96,746,646 4,451 0 0 0 116
sinhf 513,228,704 6,597 2 1 6 319
coshf 510,160,580 7,452 0 0 0 108
sinf 2,244,652,980 7,113 7 5 11 1732
cosf 2,090,517,088 8,521 8 4 13 1141
tanf 2,649,366,664 11,073 11 5 15 2175

Fig. 7. Speedup of the resulting correctly rounded functions generated using our approach. The first bar

reports the speedup just due to the reduction in the number of special cases with our maximum consensus

solution (MCS). The second bar reports the speedup due to reduction in the special cases along with other

optimizations to range reduction and output compensation when compared to functions in the RLibm project.

For feasible LDLPs, our nearly-maximum consensus formulation produces the �nal solution. For
infeasible LDLPs, the solution reported by our nearly-maximum consensus solution is almost as
good as the best solution that we generate. The only exception being the log10f function where our
iterative loop for maximum consensus is needed to account for both the rounding errors resulting
from rounding an exact rational solution to an FP solution and reducing the bias caused by a �xed
basis, which was computed independently of the set of violated constraints V1. The number of
violated constraints reduces from 39 to 8 with our iterative maximum consensus loop.

The sixth column of Table 2 reports the number of violated constraints in the best solution
generated by the RLibm solver. The RLibm solver did not generate the best solution reported by our
solver. Finally, the seventh column of Table 2 reports the time taken to produce the best solution
with our solver. The time taken increases with the increase in the number of constraints. We are
able to generate the best solution in approximately 36 minutes in the worst case (for tanf), which
is two orders of magnitude faster than RLibm’s solver (see seventh column of Table 1).

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 197. Publication date: June 2024.

Maximum Consensus FP Solutions for Infeasible LDLPs with Convex Hull as the IR 197:21

Improvements in the performance of the resulting elementary functions. Figure 7 reports
the speedup of the resulting elementary functions as a result of: (1) maximum consensus solutions
generated by our solver and (2) other improvements to range reduction and output compensation
along with the maximum consensus solutions. Each constraint that is violated by our solution
is added as a branch condition. We use __builtin_expect intrinsics to provide hints to the
compiler to optimize the common case. On average, our implementations with maximum consensus
solutions are 8% faster than the corresponding RLibm functions with the same range reduction
and output compensation code. The feasible LDLPs do not see any improvement in performance.
The performance improvement is signi�cant for infeasible LDLPs with a large number of special
cases. The logf function has 24% speedup because it has a signi�cant reduction in the number
of constraints violated between the RLibm solution (i.e., 24) and our solution (i.e., 10). When our
improvements to range reduction and output compensation are combined with maximum consensus
solutions, we improved the performance of the resulting implementations by 20% on average when
compared to previous RLibm functions.

8 RELATED WORK

We describe closely related work on solving linear programs and on computing the convex hull.
Solving Linear Programs. Detailed exposition on various approaches to solve linear programs

ranging from the simplex algorithm to interior-point and ellipsoid methods can be found in the
textbooks [59]. As a result of algorithmic and engineering advances, modern LP solvers can easily
solve several thousand constraints and unknowns. Meggido [42] and Clarkson [20] made seminal
advances by observing that certain classes of “feasible” linear programs that have low-dimensions
can be solved much more e�ectively with randomized algorithms. Based on the advances of
Clarkson, Seidel [51] observed that computing the convex hull can help in solving low-dimensional
feasible linear programs with a simpler analysis. When these algorithms are applied to infeasible
linear programs, they will not terminate and do not generate the maximum consensus solution.
Further, all these algorithms work with real values and may not produce �oating point solutions.
In our prior work in the RLibm project, we used the ideas from Clarkson’s method and designed a
solver for feasible LDLPs that produce �oating point solutions with the solve-and-re�ne loop [2].
The key idea in RLibm’s adaptation of Clarkon’s method is to solve the sample with real values and
tighten the constraints when the sample solution with real values rounded to �oating point values
does not satisfy the sample. When given an infeasible LDLP, RLibm’s solver fails to terminate and
�nd the maximum consensus solution similar to Clarkson’s method. We use our previous RLibm
solver for feasible LDLPs internally once we create a feasible subset of the infeasible LDLP.

Irreducible infeasible subsets. A subset C of constraints that itself is infeasible, but any proper
subset of C is feasible, is called an irreducible infeasible subset (IIS). The concept of an IIS was �rst
introduced for general optimization problems and later introduced for linear programs [29, 58].
The �rst practical methods for computing them were presented in the seminal work of Chinneck
and Dravnieks [18]. Since then, after identifying an IIS in a linear program, various methods have
been proposed for removing constraints until the system becomes feasible [17, 18, 54, 60].
Maximum consensus formulations. The concept of maximum feasible subsets (MAXFS) of

constraints were �rst introduced by Amaldi et al. [6]. Some equivalent formulations for MAXFS
include the minimum unsatis�ed linear relation problem [5] and the minimum cardinality IIS
set-covering problem [16]. All these formulations are known to be NP-hard [49]. Greenberg et

al. [28] have proposed a mixed-integer linear program computing the MAXFS for linear constraints.
The vision community has explored similar maximum consensus solutions for many model-�tting
problems on real-world data, which is contaminated by noise and outliers. Similar to the LDLP
formulation of RLibm [2], there are several “hypothesize-and-verify” methods in computer vision

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 197. Publication date: June 2024.

197:22 Mridul Aanjaneya and Santosh Nagaraka�e

as well, predominantly RANSAC [25] and its variants. They do not provide good solutions for
infeasible linear programs. Hence, globally optimal algorithms for maximum consensus, such as
branch-and-bound search [35, 62], tree search [15], or exhaustive search [24, 45] have been explored.
However, they work only for small problem sizes. Our formulation is inspired by the prior MCS
work [34] which decomposed the maximum consensus problem into two separate linear programs
using a penalty formulation. However, this MCS formulation [34] destroys the low-dimensional
property, which is crucial for solving LPs with billions of constraints. Hence, it does not solve any
infeasible or feasible system as we show in our evaluation in Section 7.

Computing the convex hull. Exactly computing the convex hull of = points that are embedded
in 3-dimensional Euclidean space has an asymptotic run-time complexity of$ (=3) [22]. The fastest
known algorithm for computing the convex hull has a complexity of $ (=2 + |� | log=) [50], where
|� | is the number of faces on the convex hull. This is still prohibitively expensive when = is in the
order of billions of constraints. The complexity of exactly computing the convex hull was recently
recognized by Müller et al. [44] in the context of formal veri�cation of deep neural networks where
they propose an approximation algorithm for computing the convex hull.

For identifying a superset of the infeasible constraints, we only need to identify the points that
lie on the convex hull and do not require knowledge of the connectivity structure (i.e., the topology
of the convex hull). Some researchers have recognized this problem to be easier than computing
the convex hull and termed it as the frame problem [21]. A good discussion of the di�erences in
complexity of the convex hull and the frame problem is provided in [31]. The method proposed by
Dulá et al. [21] requires a complex initialization procedure and is serial in nature, where a linear
program is needed to be solved per iteration. This approach is very slow for problem sizes with
billions of constraints. Thus, we designed a di�erent approach that can very quickly identify a
superset of the infeasible constraints by computing the convex hull in the dual space.
Correctly rounded math libraries. The seminal book [43] by Muller provides a detailed

survey on generating correctly rounded math libraries. The standard approach to develop correctly
rounded math libraries prior to the RLibm project was to create polynomial approximations that
minimizes the maximum error across all inputs using the Remez algorithm. In contrast to minimax
methods, the RLibm project makes a case for directly approximating the correctly rounded result
and creating a rounding interval, which naturally leads to an LDLP. The RLibm project has shown
that the freedom available to the polynomial generator is much larger than minimax methods.
Hence, solving large LDLPs with billions of constraints with few violated constraints is crucial
for performance of the resulting functions. Given that infeasible LDLPs are common with the
RLibm project, our solver makes the resulting math libraries much faster by producing maximum
consensus solutions.

9 CONCLUSION

We propose a new method for solving infeasible low-dimensional linear programs with billions of
constraints to generate �oating point solutions that satisfy the maximum number of constraints.
Our key idea is to create a superset of infeasible constraints by computing the convex hull and
subsequently create a new linear programwith slack variables whose solution satis�es themaximum
number of constraints in the original LDLP. In the context of LDLPs generated in the RLibm

project, our method not only produces the best solution but also does it signi�cantly faster. The
resulting solutions from our solver along with other optimizations to range reduction and output
compensation helped us improve the performance of RLibm’s math libraries by 20% on average.
Our approach to solve large infeasible LDLPs with �oating point solutions will likely be useful in
various domains such as neural network veri�cation, robotics, and computer vision, which we plan
to explore in the future.

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 197. Publication date: June 2024.

Maximum Consensus FP Solutions for Infeasible LDLPs with Convex Hull as the IR 197:23

ACKNOWLEDGMENTS

We thank the PLDI reviewers, Bill Zorn, and members of the Rutgers Architecture and Programming
Languages (RAPL) lab for their feedback on this paper. This material is based upon work supported
in part by the National Science Foundation with grants: 2110861, 2312220, and 1908798 and a
research gift from Intel Corporation. Any opinions, �ndings, and conclusions or recommendations
expressed in this material are those of the authors and do not necessarily re�ect the views of the
National Science Foundation or Intel.

REFERENCES

[1] [n. d.]. Cyclic Polytope. https://en.wikipedia.org/wiki/Cyclic_polytope
[2] Mridul Aanjaneya, Jay P. Lim, and Santosh Nagarakatte. 2022. Progressive Polynomial Approximations for Fast

Correctly Rounded Math Libraries. In Proceedings of the 43rd ACM SIGPLAN International Conference on Programming

Language Design and Implementation (San Diego, CA, USA) (PLDI 2022). Association for Computing Machinery, New
York, NY, USA, 552–565. https://doi.org/10.1145/3519939.3523447

[3] Mridul Aanjaneya and Santosh Nagarakatte. 2023. Fast Polynomial Evaluation for Correctly Rounded Elementary
Functions Using the RLIBM Approach. In Proceedings of the 21st ACM/IEEE International Symposium on Code Generation

and Optimization (Montréal, QC, Canada) (CGO 2023). Association for Computing Machinery, New York, NY, USA,
95–107. https://doi.org/10.1145/3579990.3580022

[4] Mridul Aanjaneya and Santosh Nagarakatte. 2024. RLIBM’s Maximum Consensus LP Solver. https://github.com/rutgers-
apl/The-RLIBM-Project/tree/main/mcs-lp-solver

[5] Edoardo Amaldi. 1994. From �nding maximum feasible subsystems of linear systems to feedforward neural network
design. (01 1994). https://doi.org/10.5075/ep�-thesis-1282

[6] Edoardo Amaldi, Marc E. Pfetsch, and Leslie E. Trotter. 1999. Some Structural and Algorithmic Properties of the
Maximum Feasible Subsystem Problem. In Integer Programming and Combinatorial Optimization, Gérard Cornuéjols,
Rainer E. Burkard, and Gerhard J. Woeginger (Eds.). 45–59. https://doi.org/10.1007/3-540-48777-8_4

[7] José L. Balcázar, Yang Dai, Junichi Tanaka, and Osamu Watanabe. 2008. Provably Fast Training Algorithms for Support
VectorMachines. Theory of Computing Systems 42, 4 (01May 2008), 568–595. https://doi.org/10.1007/s00224-007-9094-6

[8] José L. Balcázar, Yang Dai, and OsamuWatanabe. 2001. Provably Fast Training Algorithms for Support Vector Machines.
In Proceedings of the 2001 IEEE International Conference on Data Mining (ICDM ’01). IEEE Computer Society, USA,
43–50. https://doi.org/10.1109/ICDM.2001.989499

[9] José L. Balcázar, Yang Dai, and Osamu Watanabe. 2001. A Random Sampling Technique for Training Support Vector
Machines. In Proceedings of the 12th International Conference on Algorithmic Learning Theory (ALT ’01). Springer-Verlag,
Berlin, Heidelberg, 119–134. https://doi.org/10.1007/3-540-45583-3_11

[10] Colin Bell, Anil Nerode, Raymond T. Ng, and V. S. Subrahmanian. 1992. Implementing Deductive Databases by Linear
Programming. In Proceedings of the Eleventh ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database

Systems (San Diego, California, USA) (PODS ’92). Association for Computing Machinery, New York, NY, USA, 283–292.
https://doi.org/10.1145/137097.137892

[11] Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars. 2008. Computational Geometry: Algorithms and

Applications (3rd ed. ed.). Springer-Verlag TELOS, Santa Clara, CA, USA. https://doi.org/10.1007/978-3-540-77974-2
[12] Kevin Q. Brown. 1978. Fast Intersection of Half Spaces. https://apps.dtic.mil/sti/citations/ADA058787 CMUDepartment

of Computer Science Technical Report ADA058787.
[13] Luca Carlone and Daniel Lyons. 2014. Uncertainty-constrained robot exploration: A mixed-integer linear programming

approach. Proceedings - IEEE International Conference on Robotics and Automation, 1140–1147. https://doi.org/10.1109/
ICRA.2014.6906997

[14] Bernard Chazelle, Leo J. Guibas, and D. T. Lee. 1985. The power of geometric duality. BIT Numerical Mathematics 25, 1
(01 Mar 1985), 76–90. https://doi.org/10.1007/BF01934990

[15] Tat-Jun Chin, Pulak Purkait, Anders Eriksson, and David Suter. 2015. E�cient globally optimal consensus maximisation
with tree search. In 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2413–2421. https:
//doi.org/10.1109/TPAMI.2016.2631531

[16] John W. Chinneck. 1996. An e�ective polynomial-time heuristic for the minimum-cardinality IIS set-covering problem.
Annals of Mathematics and Arti�cial Intelligence 17 (1996), 127–144. https://doi.org/10.1007/BF02284627

[17] John W. Chinneck. 1997. Finding a Useful Subset of Constraints for Analysis in an Infeasible Linear Program. INFORMS

J. Comput. 9 (1997), 164–174. https://doi.org/10.1287/ijoc.9.2.164
[18] John W. Chinneck and Erik W. Dravnieks. 1991. Locating Minimal Infeasible Constraint Sets in Linear Programs.

INFORMS J. Comput. 3 (1991), 157–168. https://doi.org/10.1287/ijoc.3.2.157

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 197. Publication date: June 2024.

https://en.wikipedia.org/wiki/Cyclic_polytope
https://doi.org/10.1145/3519939.3523447
https://doi.org/10.1145/3579990.3580022
https://github.com/rutgers-apl/The-RLIBM-Project/tree/main/mcs-lp-solver
https://github.com/rutgers-apl/The-RLIBM-Project/tree/main/mcs-lp-solver
https://doi.org/10.5075/epfl-thesis-1282
https://doi.org/10.1007/3-540-48777-8_4
https://doi.org/10.1007/s00224-007-9094-6
https://doi.org/10.1109/ICDM.2001.989499
https://doi.org/10.1007/3-540-45583-3_11
https://doi.org/10.1145/137097.137892
https://doi.org/10.1007/978-3-540-77974-2
https://apps.dtic.mil/sti/citations/ADA058787
https://doi.org/10.1109/ICRA.2014.6906997
https://doi.org/10.1109/ICRA.2014.6906997
https://doi.org/10.1007/BF01934990
https://doi.org/10.1109/TPAMI.2016.2631531
https://doi.org/10.1109/TPAMI.2016.2631531
https://doi.org/10.1007/BF02284627
https://doi.org/10.1287/ijoc.9.2.164
https://doi.org/10.1287/ijoc.3.2.157

197:24 Mridul Aanjaneya and Santosh Nagaraka�e

[19] Vasek Chvatal. 1983. Linear Programming. W. H. Freeman.
[20] Kenneth L. Clarkson. 1995. Las Vegas Algorithms for Linear and Integer Programming When the Dimension is Small.

J. ACM 42, 2 (March 1995), 488–499. https://doi.org/10.1145/201019.201036
[21] J.H. Dulá and R.V. Helgason. 1996. A new procedure for identifying the frame of the convex hull of a �nite collection

of points in multidimensional space. European Journal of Operational Research 92, 2 (1996), 352–367. https://doi.org/
10.1016/0377-2217(94)00366-1

[22] Herbert Edelsbrunner. 1987. Algorithms in Combinatorial Geometry. Springer. https://doi.org/10.1007/978-3-642-
61568-9

[23] Pavlos S. Efraimidis and Paul G. Spirakis. 2006. Weighted random sampling with a reservoir. Inform. Process. Lett. 97, 5
(2006), 181–185. https://doi.org/10.1016/j.ipl.2005.11.003

[24] Olof Enqvist, Erik Ask, Fredrik Kahl, and Kalle Åström. 2012. Robust Fitting for Multiple View Geometry. In ECCV.
https://doi.org/10.1007/978-3-642-33718-5_53

[25] Martin A. Fischler and Robert C. Bolles. 1981. Random Sample Consensus: A Paradigm for Model Fitting with
Applications to Image Analysis and Automated Cartography. Commun. ACM 24, 6 (1981), 381–395. https://doi.org/10.
1145/358669.358692

[26] Vinod Ganapathy, Somesh Jha, David Chandler, David Melski, and David Vitek. 2003. Bu�er Overrun Detection Using
Linear Programming and Static Analysis. In Proceedings of the 10th ACM Conference on Computer and Communications

Security (Washington D.C., USA) (CCS ’03). Association for Computing Machinery, New York, NY, USA, 345–354.
https://doi.org/10.1145/948109.948155

[27] W. Shane Grant, Randolph Voorhies, and Laurent Itti. 2013. Finding planes in LiDAR point clouds for real-time
registration. 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (2013), 4347–4354. https:
//doi.org/10.1109/IROS.2013.6696980

[28] Harvey Greenberg and Frederic Murphy. 1991. Approaches to Diagnosing Infeasible Linear Programs. INFORMS

Journal on Computing 3 (08 1991), 253–261. https://doi.org/10.1287/ijoc.3.3.253
[29] Harvey J. Greenberg. 1993. Enhancements of ANALYZE: a computer-assisted analysis system for linear programming.

ACM Trans. Math. Softw. 19, 2 (1993), 233–256. https://doi.org/10.1145/152613.152619
[30] Sariel Har-peled. 2011. Geometric Approximation Algorithms. American Mathematical Society.
[31] Christian Helbling. 2010. Extreme points in medium and high dimensions. Master Thesis. ETH Zürich. 1–83 pages.

https://doi.org/10.3929/ethz-a-006250404
[32] Qixing Huang, Leonidas J. Guibas, and Niloy J. Mitra. 2014. Near-Regular Structure Discovery Using Linear Program-

ming. ACM Trans. Graph. 33, 3, Article 23 (jun 2014), 17 pages. https://doi.org/10.1145/2535596
[33] David G. Kirkpatrick and Raimund Seidel. 1986. The Ultimate Planar Convex Hull Algorithm? SIAM J. Comput. 15, 1

(1986), 287–299. https://doi.org/10.1137/0215021
[34] Huu Le, Tat-Jun Chin, and David Suter. 2017. An Exact Penalty Method for Locally Convergent Maximum Consensus.

In IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 379–387. https://doi.org/10.1109/CVPR.2017.48
[35] Hongdong Li. 2009. Consensus set maximization with guaranteed global optimality for robust geometry estimation. In

2009 IEEE 12th International Conference on Computer Vision. 1074–1080. https://doi.org/10.1109/ICCV.2009.5459398
[36] Lingxiao Li, Minhyuk Sung, Anastasia Dubrovina, L. Yi, and Leonidas J. Guibas. 2019. Supervised Fitting of Geometric

Primitives to 3D Point Clouds. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019),
2647–2655. https://doi.org/10.1109/CVPR.2019.00276

[37] Jay P. Lim, Mridul Aanjaneya, John Gustafson, and Santosh Nagarakatte. 2021. An Approach to Generate Correctly
Rounded Math Libraries for New Floating Point Variants. Proceedings of the ACM on Programming Languages 6, POPL,
Article 29 (Jan. 2021), 30 pages. https://doi.org/10.1145/3434310

[38] Jay P. Lim and Santosh Nagarakatte. 2021. High Performance Correctly Rounded Math Libraries for 32-bit Floating
Point Representations. In 42nd ACM SIGPLAN Conference on Programming Language Design and Implementation

(PLDI’21). https://doi.org/10.1145/3453483.3454049
[39] Jay P Lim and Santosh Nagarakatte. 2021. RLIBM-32: High Performance Correctly Rounded Math Libraries for

32-bit Floating Point Representations. arXiv:2104.04043 Rutgers Department of Computer Science Technical Report
DCS-TR-754.

[40] Jay P. Lim and Santosh Nagarakatte. 2022. One Polynomial Approximation to Produce Correctly Rounded Results of
an Elementary Function for Multiple Representations and Rounding Modes. Proceedings of the ACM on Programming

Languages 6, POPL, Article 3 (Jan. 2022), 28 pages. https://doi.org/10.1145/3498664
[41] O.L. Mangasarian and David Musicant. 2002. Large Scale Kernel Regression via Linear Programming. Machine Learning

46 (01 2002), 255–269. https://doi.org/10.1023/A:1012422931930
[42] Nimrod Megiddo. 1984. Linear Programming in Linear Time When the Dimension Is Fixed. J. ACM 31, 1 (Jan. 1984),

114–127. https://doi.org/10.1145/2422.322418

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 197. Publication date: June 2024.

https://doi.org/10.1145/201019.201036
https://doi.org/10.1016/0377-2217(94)00366-1
https://doi.org/10.1016/0377-2217(94)00366-1
https://doi.org/10.1007/978-3-642-61568-9
https://doi.org/10.1007/978-3-642-61568-9
https://doi.org/10.1016/j.ipl.2005.11.003
https://doi.org/10.1007/978-3-642-33718-5_53
https://doi.org/10.1145/358669.358692
https://doi.org/10.1145/358669.358692
https://doi.org/10.1145/948109.948155
https://doi.org/10.1109/IROS.2013.6696980
https://doi.org/10.1109/IROS.2013.6696980
https://doi.org/10.1287/ijoc.3.3.253
https://doi.org/10.1145/152613.152619
https://doi.org/10.3929/ethz-a-006250404
https://doi.org/10.1145/2535596
https://doi.org/10.1137/0215021
https://doi.org/10.1109/CVPR.2017.48
https://doi.org/10.1109/ICCV.2009.5459398
https://doi.org/10.1109/CVPR.2019.00276
https://doi.org/10.1145/3434310
https://doi.org/10.1145/3453483.3454049
https://arxiv.org/abs/2104.04043
https://doi.org/10.1145/3498664
https://doi.org/10.1023/A:1012422931930
https://doi.org/10.1145/2422.322418

Maximum Consensus FP Solutions for Infeasible LDLPs with Convex Hull as the IR 197:25

[43] Jean-Michel Muller. 2016. Elementary Functions: Algorithms and Implementation. Sprinder, 3rd edition. https:
//doi.org/10.1007/978-1-4899-7983-4

[44] Mark Niklas Müller, Gleb Makarchuk, Gagandeep Singh, Markus Püschel, and Martin Vechev. 2022. PRIMA: General
and Precise Neural Network Certi�cation via Scalable Convex Hull Approximations. Proc. ACM Program. Lang. 6,
POPL, Article 43 (jan 2022), 33 pages. https://doi.org/10.1145/3498704

[45] Carl Olsson, Olof Enqvist, and Fredrik Kahl. 2008. A polynomial-time bound for matching and registration with outliers.
2008 IEEE Conference on Computer Vision and Pattern Recognition (2008), 1–8. https://doi.org/10.1109/CVPR.2008.4587757

[46] Arjun Pitchanathan, Christian Ulmann, Michel Weber, Torsten Hoe�er, and Tobias Grosser. 2021. FPL: Fast Presburger
Arithmetic through Transprecision. Proc. ACM Program. Lang. 5, OOPSLA, Article 162 (oct 2021), 26 pages. https:
//doi.org/10.1145/3485539

[47] Arthur Richards, Eric Feron, Jonathan How, and Tom Schouwenaars. 2002. Spacecraft Trajectory Planning with
Avoidance Constraints Using Mixed-Integer Linear Programming. Journal of Guidance Control and Dynamics - J GUID

CONTROL DYNAM 25 (07 2002). https://doi.org/10.2514/2.4943
[48] Rómer Rosales and Glenn Fung. 2006. Learning Sparse Metrics via Linear Programming. In Proceedings of the 12th

ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (Philadelphia, PA, USA) (KDD ’06).
Association for Computing Machinery, New York, NY, USA, 367–373. https://doi.org/10.1145/1150402.1150444

[49] Jayaram K Sankaran. 1993. A note on resolving infeasibility in linear programs by constraint relaxation. Operations
Research Letters 13, 1 (1993), 19–20. https://doi.org/10.1016/0167-6377(93)90079-V

[50] R Seidel. 1986. Constructing Higher-Dimensional Convex Hulls at Logarithmic Cost per Face. In Proceedings of the

Eighteenth Annual ACM Symposium on Theory of Computing (STOC ’86). 404–413. https://doi.org/10.1145/12130.12172
[51] Raimund Seidel. 1990. Linear Programming and Convex Hulls Made Easy. In Proceedings of the Sixth Annual Symposium

on Computational Geometry (Berkley, California, USA) (SCG ’90). Association for Computing Machinery, New York,
NY, USA, 211–215. https://doi.org/10.1145/98524.98570

[52] Matthew Sotoudeh and Aditya V. Thakur. 2021. Provable Repair of Deep Neural Networks. In Proceedings of the 42nd

ACM SIGPLAN International Conference on Programming Language Design and Implementation (Virtual, Canada) (PLDI
2021). Association for Computing Machinery, New York, NY, USA, 588–603. https://doi.org/10.1145/3453483.3454064

[53] Umar Syed, Michael Bowling, and Robert E. Schapire. 2008. Apprenticeship Learning Using Linear Programming. In
Proceedings of the 25th International Conference on Machine Learning (Helsinki, Finland) (ICML ’08). Association for
Computing Machinery, New York, NY, USA, 1032–1039. https://doi.org/10.1145/1390156.1390286

[54] M. Tamiz, S.J. Mardle, and D.F. Jones. 1996. Detecting IIS in infeasible linear programmes using techniques from goal
programming. Computers and Operations Research 23, 2 (1996), 113–119. https://doi.org/10.1016/0305-0548(95)00018-H

[55] Zhe Tao, Stephanie Nawas, Jacqueline Mitchell, and Aditya V. Thakur. 2023. Architecture-Preserving Provable
Repair of Deep Neural Networks. Proc. ACM Program. Lang. 7, PLDI, Article 124 (jun 2023), 25 pages. https:
//doi.org/10.1145/3591238

[56] The CGAL Project. 2023. CGAL User and Reference Manual (5.6 ed.). CGAL Editorial Board. https://doc.cgal.org/5.6/
Manual/packages.html

[57] Trung-Thien Tran, Van-Toan Cao, and Denis Laurendeau. 2015. Extraction of cylinders and estimation of their
parameters from point clouds. Computers & Graphics 46 (02 2015), 345–357. https://doi.org/10.1016/j.cag.2014.09.027

[58] J.N.M. van Loon. 1981. Irreducibly inconsistent systems of linear inequalities. European Journal of Operational Research
8, 3 (1981), 283–288. https://doi.org/10.1016/0377-2217(81)90177-6

[59] Robert J. Vanderbei. 2020. Linear programming: Foundations and extensions. Springer. 1–465 pages. https://doi.org/10.
1007/978-1-4614-7630-6

[60] Jian Yang. 2008. Infeasibility resolution based on goal programming. Comput. Oper. Res. 35, 5 (2008), 1483–1493.
https://doi.org/10.1016/j.cor.2006.08.006

[61] Li Zhang andWei-Da Zhou. 2011. Sparse ensembles using weighted combination methods based on linear programming.
Pattern Recognition 44, 1 (2011), 97–106. https://doi.org/10.1016/j.patcog.2010.07.021

[62] Yinqiang Zheng, Shigeki Sugimoto, and Masatoshi Okutomi. 2011. Deterministically maximizing feasible subsystem
for robust model �tting with unit norm constraint. Proceedings of the IEEE Computer Society Conference on Computer

Vision and Pattern Recognition, 1825 – 1832. https://doi.org/10.1109/CVPR.2011.5995640

Received 2023-11-16; accepted 2024-03-31

Proc. ACM Program. Lang., Vol. 8, No. PLDI, Article 197. Publication date: June 2024.

https://doi.org/10.1007/978-1-4899-7983-4
https://doi.org/10.1007/978-1-4899-7983-4
https://doi.org/10.1145/3498704
https://doi.org/10.1109/CVPR.2008.4587757
https://doi.org/10.1145/3485539
https://doi.org/10.1145/3485539
https://doi.org/10.2514/2.4943
https://doi.org/10.1145/1150402.1150444
https://doi.org/10.1016/0167-6377(93)90079-V
https://doi.org/10.1145/12130.12172
https://doi.org/10.1145/98524.98570
https://doi.org/10.1145/3453483.3454064
https://doi.org/10.1145/1390156.1390286
https://doi.org/10.1016/0305-0548(95)00018-H
https://doi.org/10.1145/3591238
https://doi.org/10.1145/3591238
https://doc.cgal.org/5.6/Manual/packages.html
https://doc.cgal.org/5.6/Manual/packages.html
https://doi.org/10.1016/j.cag.2014.09.027
https://doi.org/10.1016/0377-2217(81)90177-6
https://doi.org/10.1007/978-1-4614-7630-6
https://doi.org/10.1007/978-1-4614-7630-6
https://doi.org/10.1016/j.cor.2006.08.006
https://doi.org/10.1016/j.patcog.2010.07.021
https://doi.org/10.1109/CVPR.2011.5995640

	Abstract
	1 Introduction
	2 Background on Linear Programs in the RLibm project
	2.1 The RLibm Project
	2.2 Solving Low-Dimensional Linear Programs
	2.3 Geometric Duality and Linear Programming

	3 An Overview of Our Approach
	3.1 Convex Hull as the IR to Create a Feasible LDLP
	3.2 Maximum Consensus using the Basis of the Feasible LDLP
	3.3 Combining Clarkson's Method with the Maximum Consensus Approach

	4 Finding the Superset of Infeasible Constraints with the Convex Hull
	5 Computing Nearly Maximum Consensus Solutions
	5.1 A New Linear Program for Maximum Consensus Among V1 and BX1
	5.2 Illustration of Maximum Consensus with BX1 and V1

	6 Iteratively Finding the Maximum Consensus FP Solution
	7 Experimental Evaluation
	8 Related Work
	9 Conclusion
	Acknowledgments
	References

