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1 APPENDIX
For the sake of completeness, we summarize below the main
technical results that support the development of Graph Cities.

Alg. 1: Meta-DAG Computation
Input: 𝐹𝑘 = (𝑉𝑘 , 𝐸𝑘 ) , a fixed point of peel value k.
Input: 𝑆 = {𝑆0, 𝑆1, 𝑆2, ..., 𝑆𝑛 } where each 𝑆 𝑗 ⊂ 𝑉𝑘 is a fragment seed set.
Output:𝐺𝐷𝐴𝐺 = (𝑉 , 𝐸,𝑊 ) the meta dag of 𝐹𝑘 .

1 function meta-dag(𝐹𝑘 ) :
2 smap← []
3 for 𝑆𝑥 in 𝑆 do
4 for 𝑣 in 𝑆𝑥 do
5 smap[𝑣 ] = 𝑥

6 end
7 end
8 𝐷𝑆 ← disjointSet()
9 for (𝑢, 𝑣) in 𝐸𝑘 do

10 if smap(𝑢) = smap(𝑣) then
11 𝐷𝑆.union(𝑢, 𝑣)
12 end
13 end
14 𝑉 ← ∅
15 cmap← []
16 for 𝑐 in 𝐷𝑆.sets() do
17 𝑉 ← 𝑉 ∪ {𝑐 }
18 for 𝑣 in 𝑐 do
19 cmap[𝑣 ] = 𝑐

20 end
21 end
22 𝐸 ← ∅
23 𝑊 ← ∅
24 for (𝑢, 𝑣) in 𝐸𝑘 do
25 𝐸 ← 𝐸 ∪ {(cmap[𝑢 ], cmap[𝑣 ]) }
26 𝑊 [ (cmap[𝑢 ], cmap[𝑣 ]) ] ←𝑊 [ (cmap[𝑢 ], cmap[𝑣 ]) ] + 1
27 end
28 𝐺𝐷𝐴𝐺 = (𝑉 , 𝐸,𝑊 )
29 return𝐺𝐷𝐴𝐺

30 end

Proposition 1. The edges of any Fixed Point 𝐹𝑘 of degree peel-
ing 𝑘 can be partitioned into an ordered collection of edge fragments
whose generating vertex sets partition the vertexes of the 𝐹𝑘 .

Proof Outline 1. Consider the following ordered Wave Iden-
tification process, Alg. 1 from [1].

From the Wave computation algorithm described above, it is
apparent that the algorithm generates a sequence of disjoint edge
fragments each of them with its own disjoint generating set. The
basis of induction is clear since the source set is just the set of
vertices of degree 𝑘 in 𝐹𝑘 . The induction hypothesis follows from
the fact that the ordered deletion of edge fragments in a wave
(except the source fragment) is precisely what is captured by
the definition of a Wave. The end fragment is reached when all
its neighboring vertices have degree in the wave complement
that is greater than or equal to 𝑘 . Resetting the source set to the
remaining vertices of degree k in the remaining edges of the fixed
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Alg. 2: Floor Visual Parameters
Input:𝑊0 = (𝑉0, 𝐸0) , the wave for this floor.
Input:𝑊1 = (𝑉1, 𝐸1) , the next consecutive wave.
Input: 𝐹 = {𝐹1, 𝐹2, ..., 𝐹𝑘 , ..., 𝐹𝑡 }, the set of fixed points decomposing

the entire dataset,𝑊0,𝑊1 ⊂ 𝐹𝑘 .
Input: 𝑆 = {𝑆0, 𝑆1, 𝑆2, ..., 𝑆𝑛 } where each 𝑆 𝑗 ⊂ 𝑉0 is a fragment seed set.
Output: (𝑅𝑏 , 𝐻, 𝑅𝑡 ,𝐶, 𝐿) , the radius of bottom disk, height between

disks, radius of top disk, color, and light intensity.
1 function floor(𝐹𝑘 ) :
2 𝑅𝑏 ← log2 ( |𝑆0 |)
3 𝑅𝑡 ← log2 ( |𝑉 | − |𝑆0 |)
4 if𝑊1 ≠ ∅ then
5 𝐸ℎ ← {(𝑢, 𝑣) ∈ 𝐸0 : 𝑣 ∈ 𝑉1 }
6 else
7 𝐸ℎ ← {(𝑢, 𝑣) ∈ 𝐸0 : 𝑢 ∈ 𝑆𝑖 , 𝑣 ∈ 𝑆 𝑗 ∀𝑆𝑖 , 𝑆 𝑗 ∈ 𝑆 }
8 end
9 𝐻 ← log2 (3 ∗ 𝐸ℎ/(𝜋 ∗ (𝑅2

𝑡 + 𝑅𝑡𝑅𝑏 + 𝑅2
𝑏
)))

10 𝐶 = 2 ∗ 𝐸ℎ/(𝑉0 ∗𝑉1)
11 𝐿 = | {𝑣 ∈ 𝑉0 : 𝑣 ∈ 𝐹𝑖 , ∀𝐹𝑖 ∈ 𝐹 \ {𝐹𝑘 }} |
12 return (𝑅𝑏 , 𝐻, 𝑅𝑡 ,𝐶, 𝐿)
13 end

Alg. 3:Wave Decomposition (𝑂 (𝑚))
Input: 𝐹𝑘 = (𝑉 , 𝐸) , a fixed point of peel value k.
Output:𝑀 = {𝑊1,𝑊2,𝑊3, ...,𝑊𝑚 } where each𝑊𝑖 ⊂ 𝑀 are waves.
Output: 𝑆 = {𝑆0, 𝑆1, 𝑆2, ..., 𝑆𝑛 } where each 𝑆 𝑗 ⊂ 𝑉 .

1 function waves(𝐹𝑘 ) :
2 𝑀 ← ∅
3 𝑆 ← ∅
4 𝑖 ← 1
5 𝑗 ← 0
6 while 𝐸 ≠ ∅ do
7 𝑊𝑖 ← ∅
8 𝑆 𝑗 ← {𝑣 ∈ 𝑉 : deg(𝑣) = 𝑘 }
9 while 𝑆 𝑗 ≠ ∅ do

10 𝑆 ← 𝑆 ∪ {𝑆 𝑗 }
11 𝐸 ← 𝐸 \ frag(𝑆 𝑗 )
12 𝑊𝑖 ←𝑊𝑖 ∪ frag(𝑆 𝑗 )
13 𝑆 𝑗+1 ← {𝑣 ∈ 𝜕𝑆 𝑗 | deg(𝑣) < 𝑘 }
14 𝑗 ← 𝑗 + 1
15 end
16 𝑀 ← 𝑀 ∪ {𝑊𝑖 }
17 𝑖 ← 𝑖 + 1
18 end
19 end

point (if any) lets the process starts another wave computation.
In summary, a fixed point 𝐹𝑘 of a graph 𝐺 minus the edges of
one of its waves𝑊 leaves either the empty set or a fixed point of
the same peel value 𝑘 in the subgraph remaining after deleting
the edges in𝑊 .

Corollary 1. The subset of edges of any fixed point 𝐹𝑘 of degree
peeling 𝑘 with end points in different sets of 𝑆 derived from Alg. 1
can be directed to obtain a Directed Acyclic Graph (DAG) where an
edge (𝑢, 𝑣) is directed according to the fragment generation process
described in the proof of proposition 1.

Proof Outline 2. Direct an edge from a vertex 𝑢 to a vertex
𝑣 if 𝑢 ∈ 𝑆𝑖 , 𝑣 ∈ 𝑆 𝑗 and 𝑖 < 𝑗 .

Corollary 2. A fixed point 𝐹𝑘 of peel value 𝑘 has a spanning
Meta-DAG whose longest path corresponds to the height of a build-
ing representing the fixed point.



Proof Outline 3. The subset of edges (𝑢, 𝑣) in the DAG de-
fined in corollary 1 where the fragments containing 𝑢 and 𝑣 are
consecutive is a spanning DAG of the fixed point. It is spanning
because the vertex sets of the fragments are connected and they
form a partition of the vertex sets of 𝐹𝑘 . Assuming that a fixed
point has more than one edge fragment, the longest path from
the source set of 𝐹𝑘 (i.e at the bottom floor of the building) to the
ending fragment set of 𝐹𝑘 (i.e. at the top floor of the building) cor-
responds precisely to the height of the building because the inter
floor distance is a function of the frustum volume between the
two floors which in turn encodes the number of edges running
between the two floors.

1.1 Interpreting a Graph City
“Graph Cities” provide visual representations of the overall macro-
structure of graphs with few billion edges, i.e., GigaGraphs. These
novel representations are derived by mapping each connected
equivalence class, of a special edge partition, into a “city building”.
Each such edge equivalence class is an edge maximal connected
subgraph with a fixed peel value 𝑘 . Figure ?? illustrates the initial
edge decomposition derived from the peeling values associated
to each vertex of the depicted graph after running plain vanilla
vertex core decomposition. Given a partition of the edge set of a
graph, a coarsest view of its “graph city” is provided by:

(1) the number of vertices and edges being represented,
(2) the underlying graph degree distribution,
(3) the number of “buildings”,
(4) the number of “floors” per “building” and the per “floor”

size and density, and
(5) the distribution of inter “floors” “volumes”, and “densities”.

1.2 What do “floors” tell us about a “building”
in a Graph City?

An entire “city building” can be fully explored by iteratively re-
moving neighboring vertexes of degree less than or equal to 𝑘 .
This “building” exploration partitions the corresponding edge
equivalence class into a sequence of ℎ “disjoint edge waves”
{𝑊𝑖 , 𝑖 = 0, . . . , ℎ}. These “edge waves” are in one to one cor-
respondence with a sequence of ℎ “disjoint seed vertex sets”
{𝑆𝑖 , 𝑖 = 0, . . . , ℎ}. This vertex partition sequence provides non-
decreasing directionality to every edge (𝑥,𝑦) of the graph by
directing the edge from the minimum to the maximum of the
peel values of 𝑥 and 𝑦. When both 𝑥 and 𝑦 are in the same seed
set, the edge is called horizontal and otherwise it is called a ver-
tical edge. Each seed set 𝑆𝑖 is characterized by the fact that at
some point during the building exploration, all of its vertices
become of degree exactly 𝑘 and their removal leaves all their
neighbors with degree strictly less than 𝑘 . In summary, a wave
𝑊𝑖 is the set of edges traversed in the exploration process when
the corresponding seed set 𝑆𝑖 is identified and it is followed by
iterative removal of neighboring vertexes of degree strictly less
than 𝑘 . Equivalently, the set of vertices of minimum degree 𝑘
can be used as originators of message transmissions in its wave
with all neighboring vertexes iteratively sending out strictly less
than 𝑘 messages to unvisited neighbors. Each edge wave of peel
value 𝑘 is a localized topology generated by a unique seed set of
vertices of minimum degree 𝑘 and this is conveyed in our repre-
sentation by associating unique floor with every wave. Namely,
the seed set 𝑆𝑖 of a wave𝑊𝑖 is represented by the 𝑖th “building
floor”. Its corresponding edge wave𝑊𝑖 is visually represented by
the “frustum” consisting of the two corresponding consecutive

building seed sets 𝑆𝑖 and 𝑆𝑖+1. The frustum volume between 𝑆𝑖
and 𝑆𝑖+1 encodes the number of edges in the wave𝑊𝑖 .

In summary, the number ℎ of floors in a building (i.e., the
number of waves) indicates a fixed point whose full exploration
requires the sequential activation of ℎ disjoint seed sets.

It is worth to note that in cases where a “building” is used to
represent an edge equivalence class with several connected com-
ponents then the number of floors in the “building” corresponds
to the maximum number of waves in any of its components.

1.3 What does a “building” volume represent?
Given two consecutive seed floors representing the sets 𝑆𝑖 and
𝑆𝑖+1 , the wave𝑊𝑖 associated with 𝑆𝑖 ends at a subset 𝑆 ′𝑖 of 𝑆𝑖+1
such that each of its unvisited neighbors has degree bigger that
or equal to the peel value of the wave𝑊𝑖 . The vertical distance
ℎ𝑖 between 𝑆𝑖 and 𝑆 ′𝑖 is the visual vertical distance required so
that the volume enclosed by the corresponding frustum is pro-
portional to the number of edges running from 𝑆𝑖 to 𝑆 ′

𝑖
in the

wave𝑊𝑖 . The sum of all the frustum volumes associated with
all the building waves is a lower bound on the size of the entire
equivalence class represented by the building. All these “inter-
nal” wave edges represent the “building backbone”. All the edges
running between non-consecutive waves in the building are rep-
resented by the volume of the “building enclosure” minus the
internal backbone edges. In summary, the visible volume of a
building encodes the number of edges of the represented edge
equivalence class, i.e., a Fixed Point of degree peeling. A building
with no enclosure represents a more localized topology, i.e., is
a “tree-like” fixed point with only consecutive edges. The ratio
between the overall number of edges in the fixed point and the
number of backbone edges could be an interesting and novel fix
point measure to explore in the future.

1.4 How is the internal detailed structure of a
“building” made accessible for user
exploration?

The internal structure of a building is represented by a Directed
Acyclic MacroGraph obtained by contracting the connected com-
ponents of each wave seed set . Namely, for each wave𝑊𝑖 with a
sequence of seed sets 𝑆 𝑗 , 𝑗 = 0, . . . , 𝑘 , we contract into macrover-
tices the connected components of the subgraph induced by each
𝑆 𝑗 and direct macro edges from low indexed seed sets to higher
numbered ones. These macroedegs are weighted according to
the number of original edges interconnecting the two compo-
nents. The number of internal edges of each of these connected
components is encoded by the macrovertex size and the macro-
vertex is rainbow-colored according to its internal density. The
connected components of the last seed set of the wave𝑊𝑖 are
connected to the connected components of the first seed set of
the next wave𝑊𝑖+1(if any). In summary, the internal structure
of a building is a DAG representing the connectivity between
the connected components of all the seed sets appearing in the
building waves. Our interface provides on demand access to this
DAG internal structure for user navigation and exploration on a
per building basis . Exploration tools include two-way sliders to
filter the displayed graph view by a variety of attributes.
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