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Method for Efficient Physics Simulation without Numerical Fracture
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Figure 1: Our A-ULMPM framework (bottom) avoids numerical fracture that plagues Eulerian approaches to MPM (top) and allows for
large deformations in solid and fluid simulations while requiring 4.27× – 31.52× less computational overhead for configuration updates.

Abstract
We present an adaptively updated Lagrangian Material Point Method (A-ULMPM) to alleviate non-physical artifacts, such
as the cell-crossing instability and numerical fracture, that plague state-of-the-art Eulerian formulations of MPM, while still
allowing for large deformations that arise in fluid simulations. A-ULMPM spans MPM discretizations from total Lagrangian
formulations to Eulerian formulations. We design an easy-to-implement physics-based criterion that allows A-ULMPM to
update the reference configuration adaptively for measuring physical states, including stress, strain, interpolation kernels and
their derivatives. For better efficiency and conservation of angular momentum, we further integrate the APIC [JSS∗15] and
MLS-MPM [HFG∗18] formulations in A-ULMPM by augmenting the accuracy of velocity rasterization using both the local
velocity and its first-order derivatives. Our theoretical derivations use a nodal discretized Lagrangian, instead of the weak
form discretization in MLS-MPM [HFG∗18], and naturally lead to a “modified” MLS-MPM in A-ULMPM, which can recover
MLS-MPM using a completely Eulerian formulation. A-ULMPM does not require significant changes to traditional Eulerian
formulations of MPM, and is computationally more efficient since it only updates interpolation kernels and their derivatives
during large topology changes. We present end-to-end 3D simulations of stretching and twisting hyperelastic solids, viscous
flows, splashing liquids, and multi-material interactions with large deformations to demonstrate the efficacy of our new method.
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1. Introduction

The Material Point Method (MPM) family of discretiza-
tions [SCS94], such as Fluid Implicit Particle (FLIP) [BKR88]
and Particle-in-Cell (PIC) [SZS95], emerged as an effective choice
for simulating various materials and gained popularity in visual
effects (VFX) for providing high-fidelity physics simulations of
snow [SSC∗13], sand [KGP∗16, DBD16], phase change [SSJ∗14,
GWW∗18], viscoelasticity [RGJ∗15, YSB∗15, SH∗21], viscoplas-
ticity [FLGJ19], elastoplasticity [GTJS17], fluid structure inter-
actions [FQL∗20], fracture [WFL∗19, HJST13], fluid-sediment
mixtures [TGK∗17, GPH∗18], baking and cooking [DHW∗19],
and diffusion-driven phenomena [XSH∗20]. In contrast to La-
grangian mesh-based methods, such as the Finite Element Method
(FEM) [ZTNZ77, SB12], and pure particle-based methods, such as
Smoothed Particle Hydrodynamics (SPH) [DG96, LLZ08], MPM
merges the advantages of both Lagrangian and Eulerian approaches
and automatically supports dynamic topology changes such as ma-
terial splitting and merging. It uses Lagrangian particles to carry
material states, while the background grid acts as an Eulerian
“scratch pad” for computing the divergence of stress and per-
forming spatial/temporal numerical integration. The use of a back-
ground grid allows for regular numerical stencils, benefiting from
cache-locality, while the use of particles avoids the numerical dis-
sipation issues characteristics of Eulerian grid-based schemes.

Conventional MPM discretization employs an Eulerian formu-
lation, which measures stress and strain and computes derivatives
and integrals with respect to the Eulerian coordinates (i.e., the “cur-
rent” configuration). Eulerian MPM (EMPM) has been acknowl-
edged as a powerful tool for physics-based simulations [JST∗16],
particularly if the system involves large deformations, such as fluid-
like motion. However, it suffers from a number of shortcomings
such as the cell-crossing instability that is caused when a mate-
rial point crosses between cells of the background grid because
of the discontinuous shape function gradient at the grid bound-
ary [HBG16]. Many studies have shown that when cell-crossing
occurs, the MPM solutions can either be non-convergent or reduce
the convergence rate when refining grid, with the spatial conver-
gence rate varying between first and second order [WG07] (see Fig-
ure 14). The deficiency of cell-cross instability has been reduced
in the latest MPM formulations, such as the Affine Particle-In-
Cell (APIC) method [JST17], the generalized interpolation MPM
(GIMP) [BK04, GTJS17], and the Convected Particles Domain In-
terpolation (CPDI) [SBB11]. Among them, the APIC approach has
been widely adopted in computer graphics. The central idea behind
APIC is to retain the filtering property of PIC, but reduce dissipa-
tion by interpolating more information, such as the velocity and its
derivatives, aiming to conserve linear and angular momentum. An
improved APIC, namely PolyPIC, was proposed in [FGG∗17] that
allows for locally high-order approximations, rather than approxi-
mations to the grid velocity field. Later on, a moving least squares
MPM formulation (MLS-MPM) [HFG∗18] was developed by in-
troducing the MLS technique to elevate the accuracy of the internal
force evaluation and velocity derivatives.

Although EMPM discretizations have been improved to a certain
degree via the aforementioned MLS techniques, they still suffer
from numerical fracture that occurs when particles are displaced

apart by a distance greater than one cell width. Such non-physical
fracture depends only on the background grid resolution and is not
related to any other issue that would ultimately limit the accuracy
of the EMPM to model actual physical fracture of materials under
large deformations (see Figure 2), particularly in solid simulations.

As a counterpart to Eulerian formulations, total Lagrangian
formulations offer a promising alternative for avoiding the cell-
crossing instability and numerical fracture in MPM [dVNH20,
dVN21]. Unlike EMPM, total Lagrangian MPM (TLMPM) mea-
sures stress and strain and computes derivatives and integrals with
respect to the original configuration at time t0 (similar to traditional
FEM [SB12, ZTNZ77]). By doing this, no matter what the defor-
mation, the reference configuration being always the same, there
is neither any cell-crossing instability nor any numerical fracture.
Despite its high efficacy in solid simulations, traditional TLMPM
fails to model extremely large deformations that arise in fluid simu-
lations. We show a 2D droplet example in Figure 3. TLMPM is not
able to capture the dynamics of splashes because the interpolation
kernel and its derivatives in TLMPM only reflect the fixed topol-
ogy at time t0 and do not support extreme topologically changing
dynamics. To alleviate the cell-crossing instability and numerical
fracture while allowing for large deformations, we present an adap-
tively updated Lagrangian discretization of MPM (A-ULMPM) that
spans from total Lagrangian formulations to Eulerian formulations.
Unlike EMPM and TLMPM, A-ULMPM allows the configuration
to be updated adaptively for measuring physical states including
stress, strain, interpolation kernels and their derivatives.

Our theoretical derivations focus on a nodal discretized La-
grangian (see equation (13)), instead of the weak form discretiza-
tion in MLS-MPM [HFG∗18], and naturally lead to a modified
MLS-MPM in A-ULMPM, which can recover MLS-MPM by using
a completely Eulerian formulation.

A-ULMPM does not require significant changes to traditional
EMPM, and is more computationally efficient since it only up-
dates interpolation kernels and their derivatives during large topol-
ogy changes. To summarize, our main contributions are as follows:

1. An adaptively updated Lagrangian MPM (A-ULMPM) that
spans discretizations from TLMPM to EMPM and avoids the
cell-crossing instability and numerical fracture;

2. An easy-to-implement criterion that automatically updates the
reference topology to enable fluid-like simulations;

3. Integration of APIC and MLS-MPM in A-ULMPM to allow an-
gular momentum conservation and efficiency by reconstructing
the interpolation kernel only during topology updates;

4. End-to-end 3D simulations of stretching and twisting hypere-
lastic solids, splashing liquids, and multi-material interactions
to highlight the benefits of our A-ULMPM framework.

2. RELATED WORK

In this work, we only review prior work related to MPM [JST∗16]
since our focus is on MPM. However, we note that there are sev-
eral established methods for particle-based simulations, includ-
ing SPH [DG96], position-based dynamics [MKN∗04, MHHR07,
MMCK14], linear complementarity formulations [Erl13], and geo-
metric computing techniques [dGWH∗15, SBH09].
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MLS-EMPM: t = {0.00833, 0.01667, 0.02500, 0.03333, 0.04167}s

MLS-TLMPM: t = {0.00833, 0.02500, 0.04167, 0.06250, 0.07917}s

MLS-A-ULMPM: t = {0.00833, 0.02500, 0.04167, 0.06250, 0.07917}s

Figure 2: Eliminating numerical fracture. Our A-ULMPM (bottom row) and TLMPM (middle row) for solid simulation capture the ap-
pealing hyperelastic rotation, preserve the angular momentum for long simulation periods, and completely eliminate numerical fracture.
Traditional EMPM (top row) suffers from severe numerical fracture in solid simulations when large deformations occur, while TLMPM
(middle row) does not. EMPM updates configurations simultaneously with respect to particles, while TLMPM does not update configura-
tions at all. A-ULMPM only updates configurations whenever the shape changes reach to our predefined criterion (see equation (33)). The
background grid represents the configuration linking to the present particle dynamics.

2.1. MPM in Graphics

The seminal work of Zhu and Bridson [ZB05] first introduced the
FLIP method for sand simulation. Subsequent works further ex-
plored its strength in simulating a broader spectrum of material
behaviors including snow [SSC∗13], granular materials [DBD16,
KGP∗16, TGK∗17, GPH∗18], foam [RGJ∗15, YSB∗15], complex
fluids [FLGJ19, GTJS17], cloth, hair and fiber collisions [JGT17,
FMB∗17, FBGZ18], fracture [WFL∗19, WCL∗20] and phase
change [SSJ∗14,GWW∗18,SH∗21]. We also note the related works
of [MSW∗09] for hair simulation, [SMT08] for cloth simulation,
[NGL10] for sand simulation and [PAKF13] for bubble simula-
tion, which bear similarities to MPM due to their hybrid nature.
Various works have improved or modified aspects of the standard
MPM techniques commonly used in graphics [FQL∗20, YSC∗18,
XSH∗20, DHW∗19]. Among them, notably, Jiang et al. [JSS∗15,
JST17] proposed an Affine Particle-In-Cell (APIC) approach that
conserves angular momentum and prevents visual artifacts such
as noise, instability, clumping and volume loss/gain existing in
both FLIP and PIC methods. Furthermore, APIC was enhanced

in [FGG∗17, HFG∗18] to improve the kinetic energy conservation
in particle/grid transfers.

2.2. MPM in Engineering

In the engineering community, MPM was first introduced
in [SCS94] as an extension of the FLIP method [BKR88], and sub-
stantial improvements and variants have been proposed thereafter,
including experimental validation for studying dynamic anticrack
propagation in snow avalanches [GGT∗18] and the use of MPM
for designing differentiable physics engines for robotics applica-
tions [HLS∗19]. Different strategies for updating the stress were
compared to investigate the energy conservation error in MPM
in [Bar02]. The quadrature error and cell-crossing error of MPM
was investigated in [SKB08]. A generalized interpolation material
point method (GIMPM) [BK04] was proposed to obtain a smoother
field representation by combining the shape functions of the grid
with the particle characteristic function. The cell-crossing error
in the MPM discretization was alleviated by introducing the lo-
cal tangent affine deformation of particles in the convected particle
domain method (CPDI) [SBB11]. However, CPDI does not com-
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Kernel-TLMPM: t = {0.14167, 0.20833, 0.47083, 0.74167, 1.31667, 1.88750, 2.04583}s

Kernel-EMPM: t = {0.14167, 0.20833, 0.47083, 0.74167, 1.31667, 1.88750, 2.06250}s

MLS-TLMPM: t = {0.14167, 0.20833, 0.47083, 0.74167, 1.31667, 1.88750, 2.06250}s

MLS-A-ULMPM: t = {0.14167, 0.20833, 0.47083, 0.74167, 1.31667, 1.88750, 2.06250}s

MLS-EMPM: t = {0.14167, 0.20833, 0.47083, 0.74167, 1.31667, 1.88750, 2.06250}s

Figure 3: 2D Droplet. We integrate A-ULMPM with traditional Kernel-MPM [SSC∗13] (see Appendix B) and MLS-MPM (see Section 5).
Although TLMPM can eliminate numerical fracture in solid simulations as shown in Figure 2, it fails to capture very large deformations,
such as fluid-like motion (see rows 1 and 3) in both Kernel-EMPM and MLS-EMPM. Our proposed A-ULMPM automatically updates con-
figurations to produce similarly detailed dynamics as those with EMPM for fluid simulation (see rows 4 and 5). Background grid represents
the configuration linking to the present particle dynamics.

pletely remove the numerical fracture issue due to gaps between
particles and grid cells. Recently, the standard MPM was reformu-
lated with respect to the initial topology, which provides the to-
tal Lagrangian formulation for MPM (TLMPM) [dVNH20], which
has been proven to completely eliminate the numerical fracture
issue and cell-crossing instability and has been further extended
in [dVN21] to support multi-body contacts. The central idea be-
hind TLMPM is very similar to the Lagrange force model described
by [JST17] (see also [SSIF07, WDG∗19]).

3. Overview of Different Formulations for Continuum
Mechanics

In this section, we briefly revisit the Lagrangian framework from
continuum mechanics for describing the governing equations of
motion and summarize the different formulations that can be de-
rived depending on the choice of the reference configuration.

3.1. Lagrangian Framework

The Lagrangian L for holonomic systems is defined as:

L(q, q̇) =K(q̇)−U(q) (1)

where q is the generalized displacement, q̇ is the generalized ve-
locity, K(q̇) is the kinetic energy and U(q) is the potential energy.
By omitting the energy due to external body forces and traction for
simplicity, the kinetic and potential energies can be defined as:

K(q̇) = 1
2

∫
B

ρ0q̇T q̇dV, U(q) =
∫
B

ρ0Ψ(F)dV (2)

where ρ0 is the material density at time t0, Ψ(F) denotes the
Helmholtz free energy per unit mass in homogeneous materials,
and F is the deformation gradient tensor. Consequently, the La-
grangian density function can be defined as follows:

L̄(q, q̇,F) = 1
2

ρ0q̇T q̇−Ψ(F) (3)

Based on the Lagrangian framework, the governing equations of
motion at time tn can be described as:

d
dt

(
∂L̄
∂q̇n

)
− ∂L̄

∂qn
= 0 (4)

where

d
dt

(
∂L̄
∂q̇n

)
= ρ0q̈n (5)
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MLS-EMPM: Time instants from left to right t = {0, 0.0005, 0.0009, 0.0016, 0.002, 0.0027}s

MLS-A-ULMPM: Time instants from left to right t = {0, 0.0005, 0.0009, 0.0016, 0.002, 0.0027}s

Figure 4: 3D Twisting column. The two ends of a rectangular beam are kinematically separated while twisting the beam. Standard MLS-
EMPM (top row) suffers from severe numerical fracture. In contrast, our MLS-A-ULMPM (bottom row) nicely captures the rich twisting
surface and preserves column shape.

t = t0: q0 t = ts: qs t = tn: qn

F0s =
∂qs
∂q0

Fsn =
∂qn
∂qs

F0n =
∂qn
∂q0

Figure 5: Elastic ball. The deformation gradient can be described
with respect to the initial configuration (total Lagrangian formula-
tion) at time t0 as F0s and F0n, or with respect to an intermediate
configuration at time ts (updated Lagrangian formulation) as Fsn,
where q is the displacement.

and

∂L̄
∂qn

=
∂Ψ(F)

∂F
∂F
∂qn

.

Note that the term ∂Ψ(F)/∂F represents a stress tensor that is deter-
mined by the material constitutive model, and the term ∂F/∂q can
be further expressed in terms of a divergence operator. These two
terms together define the internal force as the material deforms.

3.2. Total Lagrangian Formulation

In this formulation, the stress and strain in the material are mea-
sured relative to the original configuration at time t0 (see Figure 5),
such that the deformation gradient tensor F is the displacement
derivative of qn with respect to q0. Substituting F0n to ∂L̄/∂qn
gives:

∂L̄
∂qn

=
∂Ψ(F)
∂F0n

∂

∂qn

(
∂qn

∂q0

)
=∇0 ·P

and have the following governing equation of motion:

ρ0q̈n =∇0 ·P0 (6)

where the divergence operator ∇0 is also evaluated with respect to
the original configuration at time t0. In the total Lagrangian formu-
lation, the stress tensor P0 is the first Piola–Kirchhoff stress.
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3.3. Eulerian Formulation

In this formulation, the stress and strain in the material are mea-
sured relative to the current configuration at time tn (see Figure 5).
Thus, the expression for ∂L̄/∂q can be expanded as follows:

∂L̄
∂qn

=
∂Ψ(F)
∂F0n

∂F0n
∂qn

=
∂

∂qn

(
∂Ψ(F)
∂F0n

∂qn

∂q0

)
=∇n ·

(
P0FT

0n

)
Besides, ρ0 can be mapped to ρn using the relation ρ0 = J0nρn,
where ρn is the density at time tn and J0n = det(F0n). Consequently,
the Eulerian formulation gives the following equation of motion:

ρnq̈ =∇n ·Pn (7)

where Pn = P0FT
0n/J0n provides the definition of the Cauchy stress.

3.4. Adaptively Updated Lagrangian Formulation

A general formulation for measuring stress and strain with respect
to an arbitrary reference configuration at time ts has been derived
in [ZTNZ77,Sha18]. In this formulation, the expression for ∂L̄/∂q
can be expanded as follows:

∂L̄
∂qn

=
∂Ψ(F)
∂F0n

∂F0n
∂qn

=
∂Ψ(F)
∂F0n

∂F0n
∂Fsn

∂Fsn

∂qn
=∇s ·

(
P0FT

0s

)
(8)

Similar to the Eulerian formulation, we map ρ0 to ρs using the re-
lation ρs = J0sρs, where ρs represents the density at time ts and
J0s = det(F0s). Consequently, the adaptively updated Lagrangian
formulation gives the following governing equation of motion:

ρsq̈ =∇s ·Ps (9)

where Ps = P0FT
0s/J0s defines a stress measured at time ts. By set-

ting s = 0 and using the defining properties of the initial configu-
ration J00 = 1 and F00 = I, where I is the identity matrix, equa-
tion (9) recovers the total Lagrangian formulation in equation (6).
Likewise, setting s = n yields the Eulerian formulation in equa-
tion (7).

4. Method Overview

Our method introduces a nodal discretized Lagrangian into hybrid
grid-to-particle discretization for MPM and takes advantage of the
zero cell-crossing error and zero numerical fracture properties of
TLMPM. In contrast to prior MPM formulations (see equations (6)
and (7)), our method adopts adaptive reference configurations (see
grids at time ts in Figure 5) to measure stress, strain, interpola-
tion kernels and their derivatives. Data from particles is first trans-
ferred to grids (P2G) in their latest configuration. Next, the forces
are evaluated and the velocities are updated on these grids. Subse-
quently, the updated grid velocities are interpolated back to the par-
ticles (G2P) and used to update the particle positions following the
APIC method [JSS∗15]. The velocity gradients and deformation
gradients are then updated on the particles leveraging information
on the grids. Our method uses a novel criterion (see equation (33))
for automatically determining when to update the grid configura-
tion. This prevents data transfers between the particles and grids
from accumulating errors as the interpolation functions are only
updated when necessary. Figure 6 provides a high-level overview
of our method and the essential algorithmic steps are summarized
below:

Figure 6: Overview of our proposed method. The red and green
arrows represent the velocity and force vectors at the nodes of the
background grid. The blue grids represent the previous configura-
tion while the green grids denote the new configuration according
to our criterion for updating the state.

1. P2G Rasterization: Velocities on particles are reconstructed by
first-order Taylor expansion, and mass and momentum from par-
ticles at time tn are transferred to grids at time ts.

2. Grid Momentum Update: Grid momentum is updated using
explicit or implicit schemes. Note that forces are evaluated with
respect to the latest configuration at time ts.

3. G2P Velocity Transfer: Use APIC [JSS∗15] to transfer veloci-
ties from the grid to particles.

4. Update Particle Positions: Particle positions are updated with
their new velocities.

5. Update Particle Deformation Gradients: Use the MLS gra-
dient operator to update the particle deformation gradient and
account for plasticity, if it occurs.

6. Update Grid Configuration: Check if the deformation is ex-
treme according to the update criterion in equation (33). In case
of a large deformation, update weights between particles and the
grid and the K matrices on particles.

4.1. Terminology

We show integration of our adaptively updated Lagrangian for-
mulation with Kernel-MPM [SSC∗13] in Appendix B and MLS-
MPM [HFG∗18] in Section 5. In Kernel-MPM, the interpolation
is performed using shape functions and stress divergence is evalu-
ated by derivatives of the shape function, while MLS-MPM utilizes
APIC particle-to-grid velocity rasterization and uses MLS shape
functions to derive the internal force term. Using these definitions,
our terminology for different methods is provided as follows:

1. Kernel-MPM: In kernel-MPM, we have kernel-EMPM and
kernel-TLMPM represent the kernel-MPM in Eulerian and to-
tal Lagrangian frameworks, respectively. Kernel-EMPM was
presented in [SSC∗13] and kernel-TLMPM was present
in [dVNH20]. These two methods can be recovered in our
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MLS-EMPM: t = {0.0008, 0.0026, 0.0032, 0.0035, 0.04, 0.1}s

MLS-A-ULMPM: t = {0.0008, 0.0026, 0.0032, 0.0035, 0.04, 0.1}s

Figure 7: The kinematic constraint on one end of the beam is released after a certain time. MLS-EMPM (row 1) fails to recover from the
twisting deformation, while MLS-A-ULMPM (row 2) produces realistic elastic response and recovers from the elastic deformation induced
by the pulling and twisting motion.

Table 1: Physical quantities stored on particles and grid nodes.

Particle Description Grid
qp position qi
vp velocity vi

F0n
p

deformation gradient at tn
with respect to configuration at t0 −−

F0s
p

deformation gradient at ts
with respect to configuration at t0 −−

Fsn
p

deformation gradient at tn
with respect to configuration at ts −−

Ps
p Stress tensor −−

Jsn
p

volume change at tn
with respect to configuration at ts −−

−− force fi
Vp volume −−
mp mass mi

kernel-A-ULMPM framework by setting s = n for EMPM and
s = 0 for TLMPM.

2. MLS-MPM: In MLS-MPM, we have MLS-EMPM and MLS-
TLMPM represent MLS-MPM in Eulerian and total Lagrangian
frameworks, respectively. MLS-EMPM was presented in MLS-

MPM [HFG∗18]. Besides, MLS-EMPM and MLS-TLMPM can
be recovered in MLS-A-ULMPM by setting s = n for MLS-
EMPM and s = 0 for MLS-TLMPM.

5. A-ULMPM Formulation

Starting from a nodal Lagrangian formulation, we derive an alter-
nate expression for equation (6) in the hybrid particle-grid frame-
work of MPM. Interestingly, our formulation leads to a new MLS-
MPM method (MLS-A-ULMPM) whose variant recovers MLS-
MPM [HFG∗18] in the Eulerian setting. We use subscript i to de-
note quantities on grid nodes, subscript p to denote quantities on
particles, and subscript s to denote the intermediate configuration
map. Table 1 summarizes the notation used in this section.

5.1. Grid Setting

We use a global grid that covers the entire computational domain.
Each object has its own configuration map φ that maps points x
within the object to specific locations φ(x) in the global grid. To
reduce the associated memory overhead, we implement the global
grid using sparsity aware data structures [SABS14].
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Figure 8: Snow bunnies break over a wedge. Our A-ULMPM framework captures rich interactions of several snow bunnies smashing
and scattering after falling on a solid wedge, demonstrating the extreme deformations that our method can capture, similar to its Eulerian
counterparts proposed in prior works.

5.2. P2G Rasterization

In contrast to EMPM, the velocity gradients∇svp and weights W s
ip

are all evaluated with respect to the configuration map φ at time ts.
We use a first order Taylor expansion to reconstruct particle veloc-
ities and rasterize particle momentum to the grid as follows:

ms
i v

n
i = ∑

p
mp
(
vn

p +∇svprs
ip
)

W s
ip (10)

where rs
ip =

(
qs

p−qs
i
)

and∇svn
p =

∂vn
p

∂qs
, which is further expanded

out in equation (31). The mass/velocity at grid nodes are given by:

ms
i = ∑

p
mpW s

ip, vn
i =

ms
i v

n
i

∑p mpW s
ip

(11)

We also rasterize particle positions to the grid to simplify the theo-
retical derivations for the deformation gradient in equation (29) and
internal forces in equation (19) as shown below:

qn
i =

∑p qn
pW s

ip

∑p W s
ip

(12)

The idea of introducing a first-order Taylor expansion to en-
hance velocity rasterization is not new and can also be found in
APIC [JSS∗15] and MLS-MPM [HFG∗18].

5.3. Grid Momentum Update

5.3.1. Nodal Lagrangian

We interpolate the Lagrangian Ln+1
i at grid node i using values

associated with its nearby particles p as follows:

Ln+1
i = ∑

p

[
1
2

ρ
0
p

(
q̇n+1

p

)T
q̇n+1

p −Ψ

(
F0n+1

p

)]
W s

ipV s
p (13)

Substituting the expression forLn+1
i to equations (4) and (8) gives:

1. Kinetic term:

d
dt

(
∂Ln+1

i

∂q̇n+1
i

)
= ∑

p
ρ

0
pq̇n+1

p W s
ipV s

p = ∑
p

ρ
0
pW s

ipV s
p q̈n+1

p

= ms
i q̈

n+1
p

(14)

2. Deformation term:

∂Ln+1
i

∂qn
i

=−∑
p

∂Ψ(F0n+1
p )

∂qn
i

W s
ipV s

p

=−∑
p
Ps

p
∂(Fs(n+1)

p )T

∂qs
i

W s
ipV s

p

(15)

where Ps
j = P0

j(F
0s
j )

T /J0s
j .

Thus, the equation of motion for grid node i at time tn is given
by:

ms
i q̈

n+1
i +∑

j
Ps

p(F
0s
p )T ∂(Fs(n+1)

p )T

∂qs
i

W s
ipV s

j = 0 (16)

The reader may have noticed that an explicit expression of equa-
tion (16) relies on a concrete formulation of Fs(n+1)

p and its deriva-

tive ∂(Fs(n+1)
p )/∂qs

i .

5.3.2. MLS-based gradient operator

We use the gradient operator based on moving least squares (MLS)
that was proposed in [XZT19] (see Appendix A) that locally mini-
mizes the error of a certain position over its neighborhood. Follow-
ing the same notation in equation (16), the deformation gradient of
particle p at time tn relative to an arbitrary configuration map at
time ts is given as:

Fs(n+1)
p =

[
∑
k
(qn+1

k −qn+1
p )⊗ rs

pkW s
pk

][
∑
k

rs
pk⊗ rs

pkW s
pk

]−1

(17)
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Figure 9: Liquid bunny splash inside a ball. A liquid bunny is dropped inside a spherical container and undergoes vibrant and dynamic
splashes, demonstrating that our proposed A-ULMPM framework can capture the rich motion of incompressible fluids similar to existing
Eulerian approaches proposed in prior works.

where rs
pk = qs

k−qs
p.

5.3.3. Evaluation of ∂Fs(n+1)
p /∂qs

i

Based on equation (42) in Appendix A, we evaluate the derivative
of Fsn

p with respect to qs
i as:

∂Fs(n+1)
p

∂qs
i

= ∑
k

[(
δ

n+1
ik −δ

n+1
ip

)
⊗ rs

pkW s
pk

][
∑
k

rs
pk⊗ rs

pkW s
pkV s

k

]−1

(18)

5.3.4. MPM Equation of Motion with Adaptively Updated
Lagrangian

Substituting equation (18) to equation (16) yields the following
equation of motion for grid node i at time tn:

ms
i q̈

n+1
i +∑

p

[
Ps

pKs
p +Ps

iK
s
i
]

rs
ipW s

ipV s
p = 0 (19)

where Ps
p = P0

p(F
s(n+1)
p )T and Ps

i = P0
i (F

s(n+1)
i )T . Ks

p and Ks
i are

given by:

Ks
p =

(
∑

i
rs

pi⊗ rs
piW

s
piV

s
i

)−1

, Ks
i =

(
∑
p

rs
ip⊗ rs

ipW s
ipV s

p

)−1

.

We take advantage of equation (12) to simplify the term
P0

i (F
0s
i )TKs

i in equation (19) as follows:

∑
p
Ps

iK
s
i r

s
ipW s

ipV s
p = Ps

iK
s
i ∑

p
rs

ipW s
ipV s

p = 0

Setting V s
p = Js

pV 0
p , equation (19) can be rewritten as follows:

ms
i q̈

n+1
i +∑

p
P0

p(F
0s
p )TKs

prs
ipW s

ipV 0
p = 0 (20)

Equation (20) is a general MPM formulation that allows the use
of arbitrary intermediate configurations. It spans from total La-
grangian formulations to updated Lagrangian formulations. Specif-
ically:

1. Setting s = 0 yields total Lagrangian MPM:

m0
i q̈n+1

i +∑
p
P0

pK0
pr0

ipW 0
ipV 0

p = 0 (21)

2. Setting s = n+1 yields Eulerian MPM:

mn
i q̈n+1

i +∑
p
P0

p(F
0(n+1)
p )TKn+1

p rn+1
ip W n+1

ip V 0
p = 0 (22)

In the total Lagrangian formulation, there is no need to update Wip,
rip, mi, and Kp matrices in equation (21), while they require an
update at every time step in the Eulerian setting (see equation (22)).

5.4. Grid Velocity and Position Update

With explicit time stepping, the velocity is updated as vn+1
i = v̂n+1

i ,
where v̂n+1

i is given by:

v̂n+1
i = vn

i −
∆t
mi

∑
p
P0

p(F
0s
p )TKs

prs
ipW s

ipV 0
j (23)

For a semi-implicit update, we follow [SSC∗13,HFG∗18] and take
an implicit step on the velocity update by utilizing the Hessian of
Ln+1 with respective to qn+1

i . The action of this Hessian on an
arbitrary increment δqs is given as follows:

−δfi = ∑
p

V 0
p As

p(F
0s
p )TKs

prs
ipW s

ipV 0
j (24)

where As
p is given by:

As
p =

∂
2Ln+1

∂F0s
p ∂F0s

p
: ∑

j
δqs

jK
s
prs

ipW s
ipV 0

j F0s
p . (25)
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Figure 10: Hyperelastic bunny yo-yo. Under the effects of gravity, a hyperelastic bunny yo-yo breaks mid-way due to numerical fracture,
when simulated with MLS-EMPM (top), while MLS-A-ULMPM (bottom) robustly captures the stretching motion of the elastic cord to pull
the bunnies back upwards.

We linearize the implicit system with one step of Newton’s method,
which provides the following symmetric system for v̂n+1

i :

∑
j

(
Iδi j +

∆t2

mi

∂
2Ln+1

∂qs
i ∂qs

j

)
vn+1

j = v̂n+1
i (26)

where I is the identity matrix and v̂n+1
i is given in equation (23).

We update rasterized positions at grid nodes as shown below:

qn+1
i = qn

i +∆tvn+1
i (27)

5.5. G2P Velocity and Position Transfer

We project qn+1
i to the global grid and process grid-based colli-

sions [SSC∗13] to compute vn+1
i , which is transferred back to par-

ticles using the APIC method [JSS∗15]. The specific updates for
qn+1

p and vn+1
p are given below:

vn+1
p = ∑

i
vn+1

i W s
pi, qn+1

p = qn
p +∆tvn+1

p (28)

5.6. Update Particle Deformation Gradients

We first update particle deformation gradients with respect to the
latest configuration at time ts and use the following MLS-based

gradient operator (see equation (17)):

Fs(n+1)
p =

∂qn+1
p

∂qs
p

=

(
∑

i
(qn+1

i −qn+1
p )⊗ rs

ipW s
piV

s
i

)
Ks

p (29)

Substituting qn+1
i = qn

i +∆tvn+1
i and qn+1

p = qn
i +∆tvn+1

p to equa-
tion (29) gives:

Fs(n+1)
p =∑

i

[(
qn

i +vn+1
i ∆t

)
−
(

qn
p +∆tvn+1

p

)]
⊗ rs

piW
s
piV

s
i K

s
p

=Fsn
p +∆t∇svn+1

p

(30)

where∇svn+1
p is given by:

∇svn+1
p = ∑

i
(vn+1

i −vn+1
p )⊗ rs

piW
s
piV

s
i K

s
p (31)

Using the chain rule, the update for F0(n+1)
p is given by:

F0(n+1)
p =

∂qn+1
p

∂qs
p

∂qs
p

∂q0
p
= Fs(n+1)

p F0s
p (32)

5.7. Update Grid Configuration Map

We designed the configuration update criterion based on an intu-
itive assumption that more severe deformation is accompanied with
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Figure 11: Liquid bunny falling on a hyperelastic bowl. (Top) Our proposed A-ULMPM framework can robustly capture the vivid dynamic
responses of fluid-solid interactions and preserves the bowl shape. (Bottom) In contrast, the bowl fractures and fails to hold the water when
simulated with MLS-EMPM.

.

large change of J in the next time step tn+1 with respect to the latest
configuration ts. Using this observation, our criterion is defined as
a measure for the amount of particle deformation as follows:

δJp = ‖Js(n+1)
p − Jss

p ‖ (33)

where Jsn+1
p = det(Fs(n+1)

p ) and Jss
p = 1. We mark particles with

δJp ≥ ε as indicators where large deformation is taking place and
count the total amount of marked particles (nmp). If nmp/np ≥ η,
where np is the total number of particles, we update W s

ip, Ks
p, and

F0s
p . Otherwise, these variables remain the same until a new up-

date occurs. ε and η are user-defined parameters to adjust the up-
date frequency. Intuitively, a greater ε or η implies that only when
a larger percentage of particles are undergoing significant enough
deformation will the configuration be updated, thus more computa-
tional time is needed for weight update. Theoretically, the run time
will be bounded by EMPM as the the upper bound,and TLMPM
as the lower bound respectively, as the EMPM updates the weight
per time step while the TLMPM only needs the initial weight. Fig-
ure 12 visually demonstrates our update criterion, where large val-
ues of δJp represent large deformations.

Figure 12: Falling droplet. Our configuration update criterion can
capture relatively severe deformation with respect to the last up-
dated configuration. The values of δJp at particles are visualized
with colors from red to blue for increasing values.

Other configuration update criteria, such as those in [ZZL∗17,
QZG∗19], can also be used to integrate with our A-ULMPM frame-
work. For concreteness, we compare our configuration update cri-
terion with that in [ZZL∗17] that is described by the equation:

K(Fp) =
1

‖F−1
p ‖p‖Fp‖p

(34)

where ‖ · ‖F is the Frobenius norm. Larger values of K(Fp) de-
note better conditioned systems and vice-versa. The formulation
in equation (34) uses the deformation gradient with respect to the
original configuration, while our criterion uses the deformation gra-

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.



H. Su, T. Xue, C. Han & M. Aanjaneya / An MPM Discretization for Efficient Physics Simulation without Numerical Fracture

dient with respect to the latest updated configuration. By doing
this, our formulation is more intuitive and more reasonable. For
example, in the 2D droplet case (see Figure 3) severe deforma-
tion of the drop continues after the droplet hits the wall. If we
used equation (34) instead, the configuration would have to be up-
dated every time step as the deformation is always large in compari-
son to the initial state. Our proposed configuration update criterion
is developed with respect to the previous configuration that may
have already experienced large deformation. Consequently, a slight
change of relative deformation does not require the update. This is
the major reason that our method is computationally efficient. Be-
sides, the physical meaning of equation (34) is unclear as when the
object experiences rigid motion K(Fp) = 0.5, while our criterion
δJp = 0, which reflects a state of no deformation.

5.8. Similarities with MLS-EMPM and APIC

While our A-ULMPM framework is new to computer graphics, set-
ting s = n for the configuration map shares some similarities with
MLS-EMPM [HFG∗18] and APIC [JSS∗15], including momen-
tum preservation, volume change in simulations of incompress-
ible materials. Instead of detailed comparison, we mathematically
prove that the MLS-gradient of velocity is equivalent to the APIC-
gradient of velocity by leveraging the properties of interpolation
weights ∑i rpiWpi = 0 [JST17] as follows:

∇vp =∑
i
(vi−vp)⊗ rpiWipViKp

=∑
i

vi⊗ rpiWipViKp︸ ︷︷ ︸
APIC:∇vp

−vp⊗∑
i

rpiWipViKp︸ ︷︷ ︸
0

(35)

Our internal force in equation (23) has the same pattern as that in
original MLS-EMPM [HFG∗18], which is derived from the weak-
form element-free Galerkin (EFG) framework. The Kp matrices
are simplified by 4

∆x2 I for quadratic Wip and 3
∆x2 I for cubic Wip.

This simplification comes from the properties of splines, and is not
generally true for other interpolation functions.

6. Results

Accompanying this article, we open-source our code for running
3D examples with our proposed A-ULMPM framework (see Sec-
tion 5). MLS-based MPM, including MLS-EMPM, MLS-TLMPM,
and MLS-A-ULMPM, was applied to simulate all our 3D sim-
ulations. Besides the advantage of removing numerical fracture
and the cell-crossing instability in solid and fluid simulations, A-
ULMPM has the practical convenience of using the same numer-
ical implementation to adaptively update the configuration map,
without having to switch between TLMPM and EMPM. We use
the example of a falling elastic ball (see Figure 5) to evaluate the
computational cost of explicit (see equation (23)) and implicit (see
equation (26)) Euler schemes. As shown in the first two rows of Ta-
ble 2, the computational cost of these two schemes are comparable.
Given the low stiffness in the materials, we utilize the explicit Eu-
ler scheme in all our 3D examples and did not experience any need
for excessively small time steps. For our 3D solid simulations, we
set ε = 0.5 and η = 0.1, and observed that no configuration up-
date was required, showing that A-ULMPM inherits the advantage

of TLMPM for solid simulation. Due to foreseeable large deforma-
tions that arise when simulating fluid-like materials, such as wa-
ter splashes and snow scattering, we set ε = 0.01 and η = 0.01
to update the configuration maps more frequently. Even so, our
A-ULMPM scheme reduces the configuration update overhead by
4.27× – 31.52× in fluid-like simulations (see Table 3), compared
to standard EMPM. Table 2 summarizes the specific timings for all
our examples.

Table 2: All simulations were run on Machine 1: Intel(R) Core(TM)
i7-8750H CPU @ 2.20GHz and Machine 2: Intel(R) Xeon(R) CPU
E5-1620 v4 @ 3.50GHz. Simulation time is measured in average
seconds per time step. Grid: The number of occupied voxels in the
background sparse grid. Particle: The total number of MPM parti-
cles in the simulation.

Simulation Time Machine Grid Particle
2D Elastic ball (Fig.5) 0.0148 1 16.4K 20K
2D Elastic ball (implicit) 0.0165 1 16.4K 20K
2D Rotation (Fig.2(1st row)) 0.0571 1 16.4K 42K
2D Rotation (Fig. 2(2nd row)) 0.0571 1 16.4K 42K
2D Rotation (Fig. 2(3rd row)) 0.0571 1 16.4K 42K
2D Droplet (Fig. 3(1st row)) 0.0154 1 16.4K 5K
2D Droplet (Fig. 3(2nd row)) 0.0108 1 16.4K 5K
2D Droplet (Fig. 3(3rd row)) 0.0194 1 16.4K 5K
2D Droplet (Fig. 3(4th row)) 0.0146 1 16.4K 5K
2D Droplet (Fig. 3(5th row)) 0.0199 1 16.4K 5K
Twisting bar (Fig.4(1st row)) 0.627 1 1.0M 193.3K
Twisting bar (Fig.4(2nd row)) 0.624 1 1.0M 193.3K
Twisting bar (Fig.7(1st row)) 0.125 2 131.1K 48.3K
Twisting bar (Fig.7(2nd row)) 0.124 2 131.1K 48.3K
Stretchy yo-yo (Fig.10(1st row)) 1.314 2 4.2M 179.3K
Stretchy yo-yo (Fig.10(2nd row)) 1.310 2 4.2M 179.3K
Snow bunny (Fig.8) 0.965 2 524.3K 116.3K
Snow bunny (EMPM in video) 0.971 2 524.3K 116.3K
Water bunny (Fig.9) 0.341 2 2.1M 96.3K
Water bunny (EMPM in video) 0.381 2 2.1M 96.3K
FSI (Fig.11(1st row)) 0.934 1 4.2M 169.1K
FSI (Fig.11(2nd row)) 0.939 1 4.2M 169.1K

Table 3: Configuration update cost in fluid-like simulations. ε and
η: user-defined parameters to adjust the update frequency. τ: aver-
age update times per 104 time steps. Cost: average run-time.

Simulation ε η τ Cost
Snow bunny (A-ULMPM in Fig.8) 0.01 0.01 24.33 0.112
Snow bunny (EMPM in video) N/A N/A 104 0.479
Water bunny (A-ULMPM in Fig.9) 0.01 0.01 3.31 0.021
Water bunny (EMPM in video) N/A N/A 104 0.662

6.1. 2D Simulations for Solids and Fluids

6.1.1. Numerical fracture and cell-crossing instability

We simulated a 2D rotating hyperelastic plate to demonstrate that
EMPM suffers from the cell-crossing instability, which leads to se-
vere numerical fractures, while TLMPM can completely eliminate
these artifacts. Figure 2 shows that our A-ULMPM framework and
TLMPM integrated with MLS-MPM captures the appealing hyper-
elastic rotation, preserving the angular momentum for long sim-
ulation periods while completely eliminating numerical fractures.
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Figure 13: Simulation of falling viscous armadillos. Our method captures rich interactions and surface details as four armadillos that
exhibit Newtonian viscosity are dropped one by one on top of each other.

However, traditional MLS-MPM [HFG∗18] that uses an Eulerian
approach suffers from severe numerical fractures when large defor-
mations occur.

We quantitatively evaluate the spatial accuracy of our method on
the rotating hyperelastic plate example by varying the grid resolu-
tion ∆x. We utilized numerical results with resolution 256× 256
as the benchmark solution (see Figure 2) and discretize sampling
examples with spatial resolution 2i×2i, i ∈ {2, . . . ,7} for the grid.
We fixed the particle number np = 41943 for each case and ran
simulations up to a total simulation time of 0.025s with a time step
size of 10−4s. The error for numerical simulations is defined as:

E =

√
|φi−φ8|2

np
(36)

where φi is the variable evaluated by lower grid resolutions, while
φ8 is the value at resolution 2562 (benchmark). Figure 14 shows the
convergence plots for the average particle displacement and veloc-
ity for A-ULMPM integrated with MLS-MPM (s = 0), A-ULMPM
integrated with MLS-MPM (s 6= 0), A-ULMPM integrated with
MLS-MPM (black) (s= n), and A-ULMPM integrated with kernel-
MPM (s = 0), where A-ULMPM (s = 0) recovers TLMPM and
A-ULMPM (s = n) recovers EMPM, as described in Section 5.
In general, TLMPM can produce more accurate simulations since
the cell-crossing error is completely eliminated, while EMPM fails
to converge when the cell-crossing error is significant. A-ULMPM
with s 6= n exhibits second-order accuracy while its integration with
MLS-MPM has higher solution accuracy than that with kernel-
MPM.

6.1.2. 2D droplet

We ran several simulations of falling droplets to compare our im-
plementations in the A-ULMPM framework. As shown in Figure 3,
although TLMPM has benefits over EMPM for solid simulations
(see Figure 2), it fails to achieve detailed free surfaces in fluid
simulations, as shown in Figure 3, since the topology changes sig-
nificantly in fluid-like simulations. A-ULMPM automatically up-
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g 2
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Figure 14: Log-log plots of error (labeled E) vs. grid mesh size ∆x.
(Left) Error of the displacement, (right) error of the velocity; using
A-ULMPM integrated with MLS-MPM (s = 0) (red), A-ULMPM
integrated with MLS-MPM (s 6= 0) (blue), A-ULMPM integrated
with MLS-MPM (black) (s = n), and A-ULMPM integrated with
kernel-MPM (black) (s = 0). Our A-ULMPM framework recov-
ers TLMPM (s = 0) and EMPM (s = n). Comparing the slopes
and solution accuracy shows EMPM is non-convergent when grid-
crossing occurs, while A-ULMPM with s = 0 and s 6= n provides
convergent simulations with second order accuracy for displace-
ment and velocity with small ∆x.

dates configuration maps to produce similar fluid dynamics as
EMPM and captures rich interactions. Moreover, our integration
with MLS-MPM (see Section 5) yields more energetic behavior
compared to an integration with kernel-MPM (see Appendix B).

6.2. Bar Twisting

We imposed torsion and stretch boundary conditions at the two
ends of a hyperelastic beam to showcase that A-ULMPM allows
large deformations in solids without non-physical fractures. As
shown in Figure 4, traditional EMPM fails to preserve the shape
of the beam during the twisting and pulling, while A-ULMPM can
readily handle the challenging invertible elasticity when one end of
the beam is released after twisting. Figure 7 shows that A-ULMPM
is capable of robustly recovering the beam shape after extreme elas-
tic deformations, while particles in EMPM cluster into one irre-
versible (or plastic) thin string blocking the “recovery” of elasticity.
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6.3. Stretchy Yo-Yo

Next, we tossed a stretchy Stanford bunny yo-yo with gravity
forces. Our A-ULMPM hyperelastic bunny demonstrates rich elas-
tic responses and realistic bouncing dynamics, while EMPM breaks
due to severe numerical fracture (see Figure 10). Our A-ULMPM
framework can perfectly handle hyperelastic deformation under se-
vere bending (see Figure 15 (left)) and stretching (see Figure 15
(right)).

Figure 15: A closer view of the hyperelastic bunny yo-yo from Fig-
ure 10.

6.4. Fluid-like Simulations

We simulated the fluid-like behavior of different materials using
our A-ULMPM framework, as described in Section 5, such as
elastoplastic snow [SSC∗13], weakly compressible water, and vis-
cous armadillos. We dropped two copies of the snow Stanford
bunny with different orientations to a solid wedge, as shown in Fig-
ure 8. A-ULMPM captures the vivid snow smashing and scattering
after the bunnies fall on the wedge, similar to its Eulerian counter-
parts proposed in prior works [SSC∗13] (see side-by-side compar-
isons in our video). We simulated a water Stanford bunny falling in-
side a spherical container (see Figure 9), showing the extreme large
deformations and energetic splashes. Next, we show that our A-
ULMPM method can be utilized to simulate viscous fluid flows. We
couple our A-ULMPM solve in equation (26) with Newtonian vis-
cosity [SXH∗21], and dropped four copies of the viscous armadil-
los with random orientations into a cup, as shown in Figure 13.
Both A-ULMPM explicit and implicit schemes do not update the
configuration maps at each time step, in contrast to EMPM, so it is
naturally more efficient in fluid-like simulations (see Table 3).

6.5. Fluid-Structure Interaction

Our A-ULMPM framework can also simulate realistic fluid-
structure interaction problems, as shown in Figure 11. We dropped
a water Stanford bunny to a hyperelastic bowl. A-ULMPM cap-
tures rich fluid-structure interactions, displaying advantages of both
TLMPM and EMPM (see Figure 16 (right)), and highlighting that
A-ULMPM can adaptively handle both fluid and solid simulations
without having to switch between TLMPM and EMPM. In contrast,
EMPM suffers from numerical fractures. As shown in Figure 11,
the hyperelastic bowl fractures, causing the water to spill below.

6.6. Efficiency of Implicit Solve

Our A-ULMPM scheme supports both explicit and implicit solve.
The semi-implicit update allows comparable time steps with re-
spect to EMPM (see Table 4).

Figure 16: A closer view of hyperelastic deformations in the fluid-
structure interaction example from Figure 11. (Left) The bowl
breaks in EMPM due to numerical fractures, while (right) A-
ULMPM maintains a leakproof bowl.

Table 4: Time step is measured in average milliseconds (×10−3s).
Grid: Number of occupied voxels in the background sparse grid.
Particle: Total number of MPM particles in the simulation.

Simulation Time Step Grid Particle
Twisting bar (Fig.4 (1st row)) 0.178 1.0M 193.3K
Twisting bar (Fig.4 (2nd row)) 0.125 1.0M 193.3K
Stretchy yo-yo (Fig.10 (1st row)) 0.54 4.2M 179.3K
Stretchy yo-yo (Fig.10 (2nd row)) 0.71 4.2M 179.3K
Snow bunny (Fig.8) 2.52 524.3K 116.3K
Snow bunny (EMPM in video) 2.31 524.3K 116.3K
Water bunny (Fig.9) 0.73 2.1M 96.3K
Water bunny (EMPM in video) 0.73 2.1M 96.3K
Viscous armadillo (Fig. 13) 4.31 524.3K 40K
Viscous armadillo (EMPM) 4.25 524.3K 40K

7. Discussion and Conclusion

7.1. Limitations and Future Work

Our model has generated a large number of compelling examples,
but there remains much work to be done. Parameters to adjust the
configuration update frequency were tuned by hand, and it would
be interesting to calibrate them to measured models. Since each ob-
ject has it own configuration map, we only briefly investigated con-
tact by projecting particle positions to a global grid and processing
grid-based collisions [SSC∗13]. By doing this, we observed slight
self-penetration in the 3D twisting beam example (see Figure 4).
This could be addressed by further introducing contact algorithms,
such as [JGT17,HGG∗19]. While we did not experience a need for
excessively small time steps given the low stiffness of the materials
we considered, deforming materials with high wave speed, such as
steel, could benefit from a fully implicit discretization.

The present work describes our initial attempt in designing an
update criterion that applies to both solids and fluids while avoid-
ing visual artifacts such as numerical fracture. We hope that it
inspires future research in designing more accurate update crite-
ria that have better energy conservation properties. Indeed, side-
by-side comparisons with Eulerian MLS-MPM shows that while
our A-ULMPM framework produces similar fluid-like dynamics as
EMPM and captures rich interactions, it incurs a slight energy loss.
It is also worth noting that our proposed configuration update cri-
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terion is designed in a global manner. It would be interesting to
develop a local update rule based on the current method.

Since each object has it own configuration map, we only briefly
investigated contact by projecting particle positions to a global grid
and processing grid-based collisions [SSC∗13]. By doing this, we
observed slight self-penetration in the 3D twisting beam example
(see Figure 4). This could be addressed by further introducing con-
tact algorithms, such as [JGT17, HGG∗19]. Finally, while our fo-
cus was on the material responses of water, snow, and hyperelas-
tic solids, it would be interesting to investigate other materials and
multi-physics coupling problems with A-ULMPM.

7.2. Conclusion

We proposed an Adaptively Updated Lagrangian Material Point
Method (A-ULMPM), which combines advantages of Total La-
grangian frameworks [dVN21, dVNH20] and Eulerian frame-
works [SSC∗13, HFG∗18] in an adaptive fashion. A-ULMPM
avoids the cell-crossing instability and numerical fracture in solid
simulations, while still allowing for large deformations that arise
in fluid-like simulations. It can be easily integrated with any exist-
ing MPM framework and builds a foundation for devising various
MPM schemes, such as PolyPIC [FGG∗17], for enhanced accuracy
and visual vividness.
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Appendix A: MLS Gradient

Consider a domain (Ω0) in Euclidean space E. Let qi ∈ Ω0 ⊂ E
denote the geometric position of a certain point in the domain and
q j ∈ Ω0 ⊂ E denote another point which is close to the position
qi. Therefore, any physical quantity at each point in space can be
defined as ϕ(qi) and following a first-order Taylor approximation
gives:

ϕ(q j)∼= ϕ(qi)+∇ϕi jri j (37)

where ri j = q j−qi. A weighted error Ei of equation (37) is defined
within its associated domain Ωi as follows:

Ei =
∫

j∈Ωi

‖ϕ(q j)−ϕ(qi)−∇ϕi jri j‖2Wi jdV (38)

where Ωi represents the neighboring domain of qi; Wi j represents
the influence from j to i and is a function of

∥∥ri j
∥∥. To minimize the

error Ei and get the best approximation, the Least Squares Tech-
nique is exploited by introducing ∂Ei

∂∇φi
= 0:

∂

∂∇φi

∫
j∈Ωi

(
ϕ(q j)−ϕ(qi)−∇ϕi jri j

)2 Wi jdV = 0 (39)

Therefore, we have a MLS-gradient operator :

∇ϕ(qi) =

(∫
j∈Ωi

ϕ(q)i j⊗ ri jWi jdV
)(∫

j∈Ωi

ri j⊗ ri jWi jdV
)−1

(40)

where ϕ(q)i j = ϕ(q) j−ϕ(q)i and its discrete form is given by:

∇ϕ(qi) =

(
∑

j∈Ωi

ϕ(q)i j⊗ ri jWi jV j

)(
∑

j∈Ωi

ri j⊗ ri jWi jV j

)−1

(41)

where V j denotes volume distributed at q j. Moreover, the derivation
of∇ϕ(qi) with respect to qk is given as follows:

∂∇ϕ(qi)

∂ϕ(qk)
=

(
∑

j∈Ωi

ϕ(q)i j

∂ϕ(qk)
⊗ ri jWi jV j

)(
∑

j∈Ωi

ri j⊗ ri jWi jV j

)−1

=

(
∑

j∈Ωi

(
δ jk−δik

)
⊗ ri jWi jV j

)(
∑

j∈Ωi

ri j⊗ ri jWi jV j

)−1
(42)

where δ is the Kronecker delta function.

Appendix B: A-ULMPM Integration with kernel-MPM

We briefly describe the integration of our A-ULMPM with tradi-
tional MPM [SSC∗13] as follows:

1. Transfer Particles to Grid.

ms
i v

n
i = ∑

p
mpvn

pW s
pi, ms

i = ∑
p

mpW s
pi, vn

i =
ms

i v
n
i

mi
(43)

2. Update Grid Momentum.

v̂n+1
i = vn

i −
∆t
mi

∑
p
P0

p(F
0s
p )T∇sW s

ipV 0
j

qn+1
i = qn

i +∆tv̂n+1
i

(44)

3. Transfer Grid Velocity to Particles. We project qn+1
i for

all objects to the global grid and consider grid-based colli-
sions [SSC∗13] to obtain vn+1

i . We transfer vn+1
i to particles

using a weighted combination of PIC and FLIP, as described
in [SSC∗13].

4. Update Particle Deformation Gradient.

Fs(n+1)
p = Fsn

p +∆t∇svn+1
p (45)

(46)

where∇svn+1
p is given by:

∇svn+1
p = ∑

i
vn+1

i ∇sW s
pi (47)

By differential chain rule, the update of F0(n+1)
p is given by:

F0(n+1)
p =

∂qn+1
p

∂qs
p

∂qs
p

∂q0
p
= Fs(n+1)

p F0s
p (48)
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